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ABSTRACT

This paper considers an online optimization algorithm for actively
learning trusts on social networks. We first introduce a DeGroot
model for opinion dynamics under the influence of stubborn agents
and demonstrate how an observer with estimates of the individu-
als opinions can actively learn the relative trusts among different
agents, by fitting the opinions to the steady state equations of the
social system equations. The main contribution of this article is an
online algorithm for extracting the trust parameters from streaming
data of randomly sampled, noisy opinion estimates. The algorithm
is based on the stochastic proximal gradient method and it is proven
to converge almost surely. Finally, numerical results are presented to
corroborate our findings.

Index Terms— social networks, online optimization algorithm,
system identification, active learning

1. INTRODUCTION

Opinions in social networks are forged through the mutual trust
that characterize the interactions of individuals with their own cir-
cle of friends. This, through opinion diffusion among connected
circles of friends, enables individuals to leverage the wisdom of the
crowd. Hence, learning the weight of trust in social network inter-
actions, enables us to predict some global behavior. For example,
studies have shown that several phenomena such as the spread of
diseases/information [1], the polarization of opinions [2], etc., can
be predicted from the friendship structure and the trusts.

Attempts to model the effects of trusts in social networks
have been studied in [3–5]. Specifically, trusts are manifested in
the process of opinion dynamics, of which social agent’s opinion
evolves according to the different amount of trusts he/she places on
friends. Examples of such models include the DeGroot model [3],
the Hegselmann-Krause model [4], etc. These models capture the
diffusive nature of opinion dynamics and are similar to the average
consensus algorithms for wireless sensor networks [6, 7].

Studies on the effects of having different types of agents in the
network have been considered. An interesting one is when there
exists stubborn agents whose opinions cannot be swayed away by
their neighbors [8–12]. The stubborn agents are known to exist in
social networks, e.g., a politician is stubborn due to his/her political
views. Importantly, it was shown that the steady-state opinions can
be shaped by the stubborn agents and the friendship structure [11].

This work considers the task of learning trusts (and the friend-
ship structure) from observing opinion dynamics. Previous works
[12–16] have considered the passive methods by merely tracking
and recording the opinions. While their models are extensible to
learning trusts when the opinion dynamics is non-linear, these meth-
ods require perfect knowledge on the frequency of social interaction,
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which may be hard to obtain. On the other hand, this work considers
an active sensing method — by introducing a number of stubborn
agents, we can learn the trusts from the steady-state opinions, which
can be obtained without knowing the rate of social interaction.

The main contribution of this work is to develop an online al-
gorithm for estimating trusts under the DeGroot model. The opin-
ion data are acquired on-the-fly. We show that the online algorithm
converges almost surely to an optimal solution of the active learn-
ing problem when the exact expected opinions are given. We also
demonstrate that active learning outperforms passive learning.

1.1. Relation to Prior Work
This work is based on our previous papers on active sensing of social
networks [17,18], where we primarily focused on the trust identifia-
bility issue. The learning approach we propose in this paper is also
related to the study of inference in graphical models, e.g. the pop-
ular Ising’s model studied in [19, 20]. While we share the same ob-
jectives, our algorithm differs from [19,20] by considering an active
learning approach. Lastly, our work utilizes results from the study
of stochastic optimization algorithms; see [21, 22].

2. LEARNING TRUSTS IN SOCIAL NETWORKS

Consider a social network defined as a weighted, connected graph
G = (V,E,W ), where V = [n] = {1, ..., n} is the set of agents,
E ⊆ [n]× [n] is the friendship between agents andW ∈ Rn×n+ is a
stochastic matrix describing the amount of trust among the n agents.
Moreover, we have E = ΩW = {ij : W ij > 0} such that the
support ofW corresponds to the edge set/adjacency matrix of G.

The agents discuss online about several subjects, leaving a dig-
ital trace. In this work we postulate that, by analyzing their actions
in a certain interval of time t on a given subject s, it is possible
to cluster the actions and determine a score (a probability measure)
x(t; s) that represents their opinion (favorable or not, or indifferent)
on the subject matter. We assume that the opinion dynamics in G
follows a randomized DeGroot model [3]. Given the initial opin-
ions1 x(0; s) ∈ Rn, the opinions on the sth discussion x(t; s) can
be described by the random process:

x(t+ 1; s) = W (t; s)x(t; s), (1)

where xi(t; s) denotes the opinion of the ith agent,W (t; s) is an in-
dependently and identically distributed (i.i.d.) random matrix drawn
from a distribution such that E{W (t; s)} = W . Note thatW (t; s)
is stochastic, non-negative and its support set follows ΩW (t;s) ⊆ E.
Essentially, the dynamics (1) says that the opinions are mixed ran-
domly between neighboring agents during each interaction t. The

1Opinions may refer to a probability distribution of the attitude (e.g., like,
hate or ignorant) towards a certain discussion. Here, x(t; s) can be a vector.
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described model generalizes the randomized gossip model consid-
ered in a few previous works, e.g., [6, 23].

Our aim is to learn the trust matrix W by observing the opin-
ion dynamics. Notice that W is embedded in the expected opinion
dynamics of (1). A passive way to sense the social network is by
tracking the opinions x(t; s). In fact, one observes a noisy estimate:

x̂(t; s) = x(t; s) + n(t; s), (2)

where n(t; s) is a zero mean additive noise with bounded variance.
As proposed in [15], we can solve a least square regression problem:

min
W≥0

K∑
s=1

Ts−1∑
t=ts+1

‖x̂(t+ 1; s)−Wx̂(t; s)‖22 s.t. W1 = 1, (3)

where W ≥ 0 denotes that W is non-negative and [ts, Ts] is the
sampling interval on the sth discussion where y(t; s) is recorded.

An important assumption made in the passive sensing of so-
cial networks is that one is able to record the evolution of opinions
x̂(t; s) for t = ts, ts + 1, ..., Ts. Even knowing exactly the rate of
social interaction, given that the opinions are not directly observable
but need to be extracted through semantic analysis of the agents ac-
tions, the assumption made is clearly impractical. Our solution to
this is to employ an active sensing method for social networks and
to assume that the opinions on average approximately fit the steady
state equations of (1).

2.1. Active Learning of Trusts — Problem Formulation

Our active network sensing method relies on the use of stubborn
agents, whose opinions cannot be swayed away by its neighbors,
while they are influencing the opinions of the social network. We
assume such stubborn agents are known (e.g. they were actively
recruited or detected). Let the set of stubborn agents be Vs = [ns]
and the set of ordinary agents be Vr = V \ Vs. Denote Es ⊆
[n] × [ns + 1, n] as the edge set between Vr and Vs and Er ⊆
[ns + 1, n]× [ns + 1, n] as the edge set between agents in Vr . The
trust matrixW (and its realizationW (t; s)) has the block structure:

W =

(
I 0
B D

)
, W (t; s) =

(
I 0

B(t; s) D(t; s)

)
, (4)

where E{D(t; s)} = D, E{B(t; s)} = B, ΩD(t;s) ⊆ ΩD = Er
and ΩB(t;s) ⊆ ΩB = Es. Notice that the upper right block of W a

is zero since the opinions of stubborn agents cannot be swayed away.

Assumption 1 The support ofB, ΩB = {ij : Bij > 0}, is known.
Each agent in Vr has a non-zero trust on at least one agent in Vs.

Assumption 2 The induced subgraph G[Vr] is connected.

Consequently, the submatrixD satisfies ‖D‖2 < 1. We have that

Observation 1 [11] Let x(t; s) , (zT (t; s) yT (t; s))T ∈ Rn,
where z(t; s) and y(t; s) are respectively the opinions of stubborn
and ordinary agents. As x(t+ 1; s) = W (t; s)x(t; s), we have:

lim
t→∞

E{x(t; s)|z(0; s)} = (I −D)−1Bz(0; s). (5)

Notice that the set of all possible steady states without stubborn
agents (cf. (1)) spans a subspace of dimension one. In contrast, the
steady states’ space under the influence of stubborn agents spans a
subspace of dimension ns. The expanded dimension of the steady
states’ space allow us to identify the trust matrix D from observing

the steady state opinions. In particular, we stack the opinion data
across K discussions as:

Y ,
(
E{ŷ(∞; 1)|z(0; 1)} · · · E{ŷ(∞;K)|z(0;K)}

)
, (6a)

Z ,
(
E{ẑ(∞; 1)|z(0; 1)} · · · E{ẑ(∞;K)|z(0;K)}

)
, (6b)

where ŷ(t; s) = y(t; s) +ny(t; s) and ẑ(t; s) = z(t; s) +nz(t; s)
similar to (2). Leveraging on the equality Y = (I − D)−1BZ,
we see that the stubborn agents act similarly as a RADAR applied
on social networks, where one can treat Y ,Z as the output/input to
the social network, respectively. As proposed in [18], by exploiting
the sparseness of D, i.e., agents typically do not trust from a large
number of other agents, the regression problem for active network
sensing is given as a LASSO problem: let ys, zs be the sth column
of Y ,Z,

min
B≥0,
D≥0

K∑
s=1

‖ys −Dys −Bzs‖22 + λ‖D‖1+

γ‖D1 +B1− 1‖22
s.t. PSc(D) = 0, PΩc

B
(B) = 0, diag(D) = c,

(7)

where γ, λ ≥ 0, S is a known superset of ΩD , Sc is its complement
and 0 ≤ c < 1 is a preset vector for fixing the ambiguity issue
inherent in (5) (see [17]). Moreover, the operator PΩ(·) is:

[PΩ(A)]ij =

{
Aij , ij ∈ Ω,

0, otherwise,
(8)

where Ω is an index set for the elements in A. Notice that (7) is a
convex optimization problem.

An identifiability condition of (B,D) using a non-convex vari-
ant of (7) has been studied in our previous work [18]. In particular,
it was shown that the number of stubborn agents ns required for per-
fect recovery is proportional to the number of non-zeros in D. In
this paper, our focus is to study an online learning algorithm to solve
(7) using opinion samples that are acquired on-the-fly.

3. ONLINE LEARNING ALGORITHM OF TRUSTS

As noted by [17], it is possible to estimate E{x̂(∞; s)|z(0; s)} by
evaluating its temporal average, i.e., let us define

x̂s(T ) , 1
|T |
∑
t∈T ρ

tmax−tx̂(t; s), (9)

which admits the following partition

x̂s(T ) , (ŷTs (T ) ẑTs (T ))T

where 0 < ρ ≤ 1 is a forgetting factor, tmax = max{t ∈ T } and
T ⊆ {to, to + 1, . . . ,∞) is the sampling instances. The following
holds [17, Theorem 4.2]:

Fact 1 Let ρ = 1, to = mint∈T t and to →∞, we have

E{‖x̂s(T )− E{x(∞; s)|z(0; s)}‖22} = O(1/|T |). (10)

In light of Fact 1, to apply the active sensing method for social net-
works, a naı̈ve approach is to estimate the expected value Ŷ and
Ẑ using (9) by acquiring a sufficient amount of samples and, then,
using these estimates to solve the convex optimization in (7).

In practice, collecting the samples {ya(t; s)}t∈T may take a
long time. Using an online learning method one can take advantage
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Fig. 1: Streaming opinion data collected from different topics. Each colored dot repre-
sents the opinions of n agents on a discussion, i.e., x̂(t; s), and the highlighted dots
are the non-uniformly sampled opinions. At time t, only a finite number of samples are
available to the estimator in (9) and the online learning algorithm.

of the partial samples collected up to time t and provide a crude es-
timate of the trust matrix that continues to improve as more opinion
samples are gathered (see Fig. 1).

This motivated us to adapt the stochastic proximal gradient
(SPG) algorithm studied in [21]. Compared to the conventional
proximal gradient algorithm, the difference is that SPG uses a noisy
estimate of the gradient at each iteration. More specifically, consider
the following optimization problem:

min
x
f(x) + h(x), (11)

where f is convex, L-continuously differentiable and h is convex
(possibly non-smooth). The SPG algorithm is described by the fol-
lowing recursion. At the kth iteration,

xk+1 = proxαh(xk − αgk), (12)

where α ∈ (0, 1/L] with L being the Lipschitz constant for the
gradient of f . The proximal operator proxαh(·) [24] is defined as

proxαh(x) = arg min
y

(αh(y) + ‖x− y‖22). (13)

In the above, gk is a noisy estimate of the gradient:

gk = ∇f(xk) + ηk. (14)

Using the fact that f has a Lipschitz continuous gradient and (11) is
convex, the following was proven in [21, Theorem 6]:

Theorem 1. Consider the SPG algorithm (12). If lim supk→∞ ‖ηk‖
<∞ and limk→∞ η

k = 0 almost surely (a.s.), then limk→∞ x
k =

x? a.s., where x? is an optimal solution to (11).

To study the SPG algorithm on (7), we first define:

f(B,D) =

K∑
s=1

‖ys −Dys −Bzs‖22 + γ‖(D B)1− 1‖22,

h(B,D) = λ‖D‖1 + IF (B,D), (15)

where IF (·, ·) is the indicator function for the constraints in (7) such
that IF (B,D) = ∞ if (B,D) /∈ F , and is zero otherwise. Both
f and h are convex. In addition, f is a continuously differentiable
function. Notice that this shows that (7) can fit into the general form
of (11). Now, the gradient matrices of f are given by:

∇Df(B,D) = 2
∑K
s=1

(
Bzsy

T
s + (D − I)ysy

T
s

)
+2γ(D11T +B11T − 11T ),

∇Bf(B,D) = 2
∑K
s=1

(
Bzsz

T
s + (D − I)ysz

T
s

)
+2γ(D11T +B11T − 11T ),

(16)

Algorithm 1 Active online learning of trusts using SPG.

1: Initialize: (B0,D0) ∈ F , k = 1;
2: while convergence is not reached do
3: Observe new opinion samples {x̂(t; s)}t∈Tk,s\Tk−1,s

and up-
date the estimators ŷks , ẑks accordingly.

4: Compute the gradient gDk, gBk using (17).
5: Perform the proximal gradient updates (cf. (18)):

(Bk+1,Dk+1)← proxαh
(
(Bk+1 − αgBk,Dk+1 − αgDk)

)
6: k ← k + 1.
7: end while
8: Return: (Bk,Dk).

where the all ones matrices 11T are with compatible dimensions. As
mentioned before, obtaining the exact expectation (ys,zs) requires
a large number of samples on x̂(t; s) which may take a long time to
collect. Therefore, we replace these gradient matrices by estimates
of them evaluated using the data available up to iteration k.

Define Tk,s as the set of sampling instances that the samples on
x̂(t; s) are collected up to the kth iteration, i.e., at iteration k, we
have observed the samples {x̂(t; s)}t∈Tk,s for the sth discussion.
Naturally, we have Tk−1,s ⊆ Tk,s, min(Tk−1,s) = min(Tk,s) and
max(Tk−1,s) ≤ max(Tk,s). Using the shorthand notations ẑks =
ẑs(Tk,s) and ŷks = ŷs(Tk,s) (cf. (9)), the following estimate of
∇Df(Bk,Dk),∇Bf(Bk,Dk) can be obtained:

gW k = 2
∑K
s=1

(
Bkẑks (ŷks )T + (Dk − I)ŷks (ŷks )T

)
+2γ(Dk11T +Bk11T − 11T ),

gBk = 2
∑K
s=1

(
Bkẑks (ẑks )T + (Dk − I)ŷks (ẑks )T

)
+2γ(Dk11T +Bk11T − 11T ).

(17)

We can prove the following:

Proposition 1 If ρ = 1, the estimator (9) x̂s(Tk,s) converges to the
expected value xs , E{xa(∞; s)|xz(0; s)} a.s. if k → ∞ and
to →∞, where to = mint∈Tk,s t.

The proof can be found in Appendix A. As a consequence, we have
limk→∞ ŷ

k
s = ys and limk→∞ ẑ

k
s = zs a.s. and the gradient

estimates converges to the true gradient matrices a.s.. As the gradient
estimation error is bounded, applying Theorem 1 shows that the SPG
algorithm applied to (7) converges a.s..

Lastly, the proximal operator can be computed in closed form.
Define (B̃, D̃) = proxγh(B,D). We have

B̃ = PΩc
B

(B), off(D̃) = PSc(soft thγλ(off(D))), (18)

and diag(D̃) = c, where off(·) denotes the off-diagonal elements
in the square matrix, soft thλ(·) is a one-sided soft threshold-
ing operator [25] that applies element-wisely and soft thλ(x) =
u(x) max{0, x− λ}. We summarize the stochastic proximal gradi-
ent algorithm for (7) in Algorithm 1.

4. NUMERICAL RESULTS & CONCLUSIONS
We consider applying Algorithm 1 to learn the trust matrix in a syn-
thetically generated social network. The graph topology ofG is gen-
erated as Erdos-Renyi (ER) graph with connectivity p = 0.05 with
n = 100 ordinary agents. Meanwhile, we apply ns = 36 stub-
born agents and the subnetwork corresponding to the edge set Es,
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Fig. 2: The NMSE of the learning algorithms against the iteration number k. The
figure also shows the squared error in estimating zs,ys as new samples are collected
by evaluating

∑K
s=1 ‖(ẑ

k
s , ŷ

k
s )− (zs,ys)‖22/K.

i.e., between stubborn agents and ordinary agents, is generated as a
d-random regular bipartite graph. Each ordinary agent is randomly
connected to d = 5 stubborn agents such that the stubborn-ordinary
agent network forms a random regular graph. The random opin-
ion exchange follows that of a randomized broadcast gossip model
in [23] with parameter γ set to 0.5. The self-trust vector c in (7) is
set to 0. Moreover, we set S = [n] × [n], i.e., the online learning
method has no prior knowledge on the support of D. The opinion
samples are simulated according to model (1) and (2), and we gener-
ate n(t; s) as an i.i.d. vector with independentN (0, 0.1) elements.

We consider the opinion data from K = 2ns discussions. For
each discussion s, the sampling instances set Ts are uniformly sam-
pled from {103, 107} such that |Ts| = 5× 105. The first numerical
example compares the normalized mean square error against the iter-
ation number, i.e., NMSE = ‖Dk−D′‖2F /‖D

′‖2F whereD
′

is the
relative trust matrix defined by normalizing the rows ofD such that
diag(D

′
) = 0. In particular, the online learning algorithm performs

an update to the variable (Bk,Dk) whenever 5K new opinion sam-
ples are collected for the K discussions. The algorithm parameters
are ρ = 1, γ = 0.1, λ = 10−10 and α = 0.01.

The numerical results are presented in Fig. 2. As observed, the
NMSE ofDk decays as the number of iteration grows. After 105 it-
erations, the NMSE is decreased to 5×10−2. Moreover, the squared
error in the estimate of (zs,ys) decays in the order of O(1/k), cor-
roborating with Fact 1. The results demonstrates that the trusts can
be learnt when opinion samples are collected in an online setting.

To demonstrate the efficacies of the active learning method, the
last numerical example compares the estimated trust matrix to that
resulted from the passive learning method (cf. (3)) for sensing W
using the same set of data collected. As the rate of social interaction
is unknown, the passive method takes the non-uniformly sampled
opinion data as input. Moreover, the a-priori knowledge that W
follows the block structure in (4) and PΩ

B
(B) = 0 are enforced.

To handle the large amount of opinion data collected, the constrained
least square problem is tackled using a projected gradient method.

We plot the trust matrices learnt at different epochs of the algo-
rithms using the active and passive methods in Fig. 3. Notice that the
NMSE of the matrix learnt using the passive method after 105 itera-
tions of projected gradient is 0.6463. As observed, the trust matrix
estimated by the passive method contains a large number of links
with high squared error, resulting in a dense matrix. It is due to the
fact that the opinion data are collected non-uniformly. The active
method is able to estimate accurately the trust matrix.

To conclude, we have described an online algorithm for actively
learning trusts in social networks. Our approach consists in ex-
ploiting the presence of stubborn agents and their impact on the
network-wide opinions to identify the relative trusts of the social
network, without prior knowledge on the network structure. The
online algorithm is developed based on the stochastic proximal gra-
dient method and its convergence is proven. Numerical results show

Fig. 3: Histogram of the squared error in the trust matrices learnt (D̂ij − Dij)
2 at

different epochs. (top) the trust matrix learnt after 5 × 103 iterations — (left) using
online active learning (7), (right) using passive learning (3); (bottom) the trust matrices
learnt after 50× 103 iterations.

that our method is effective and works better than passive methods.
Future works include extending the online learning framework

to cases when the social network is dynamical/quasi-static and using
real opinion data collected from the public domain.

A. PROOF OF PROPOSITION 1
The proof is based on a strong law of large number for correlated
random variables from [26, p. 28] [27]:

Theorem 2. Consider Sk = (1/k)
∑k
i=1 Xi, where Xi are corre-

lated random variables such that supm≥1
Cov(Xm,Xm+i)

Var(Xm)Var(Xm+i)
≤ ρi,

where Cov(·, ·) and Var(·) denote the covariance and variance of
the random variable(s), respectively. If

∑∞
i=1 ρi < ∞, then Sk →

(1/k)
∑k
i=1 E{Xi} a.s..

We see that E{x̂(t; s)|z(0; s)} = xs for all t ∈ Tk,s as to →
∞. Thus, it suffices to prove Proposition 1 by checking the covari-
ance between terms in the summation (9). To this end, we assume
|Tk,s| = k without loss of generality and Tk,s = {t1k,s, ..., tkk,s}.
For i ≥ 1, the covariance can be bounded as:

Tr(Cov(x̂(tmk,s; s), x̂(tm+i
k,s ; s)))

≤ E{(x̂(tmk,s; s)− xs)T (x̂(tm+i
k,s ; s)− xs)|z(0; s)}

= E{(x(tmk,s; s)− xa,s)T (x(tm+i
k,s ; s)− xs)|z(0; s)},

(19)

where we have used E{nT (tmk,s; s)n
T (tm+i

k,s ; s)} = 0 for all i ≥ 1
as the noise are independent in (2). Using [17, Eq. (32)-(33)], the

latter term can be bounded by ρi = O(λ
tn+i
k,s
−tnk,s) where λ =

‖D‖2 < 1. Moreover, it is easy to check that E{‖x̂(tn+i
k,s ) −

E{x̂(tn+i
k,s )}‖22} = Θ(1). Since tn+i

k,s − tnk,s ≥ 1 for all i ≥ 1,
we get

∑∞
i=1 ρi <∞ and the conditions in Theorem 2 are satisfied.
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