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ABSTRACT

This paper considers multi-agent distributed optimization with quan-
tized communication which is needed when inter-agent communica-
tions are subject to finite capacity and other practical constraints.
To minimize the global objective formed by a sum of local convex
functions, we develop a quantized distributed algorithm based on
the alternating direction method of multipliers (ADMM). Under cer-
tain convexity assumptions, it is shown that the proposed algorithm
converges to a consensus within log

1+⌘

⌦ iterations, where ⌘ > 0

depends on the network topology and the local objectives, and ⌦ is
a polynomial fraction depending on the quantization resolution, the
distance between initial and optimal variable values, the local objec-
tives, and the network topology. We also obtain a tight upper bound
on the consensus error which does not depend on the size of the net-
work.

Index Terms— Multi-agent distributed optimization, quantiza-
tion, alternating direction method of multipliers (ADMM), linear
convergence.

1. INTRODUCTION

There has been much research interest in distributed optimization
due to recent advances in networked multi-agent systems [1, 2]. For
example, ad hoc network applications may require agents to reach
a consensus on the average of their measurements [3], including
distributed coordination of mobile autonomous agents [4] and dis-
tributed data fusion in sensor networks [5]. Another example is the
large scale machine learning where a computation task may be ex-
ecuted by collaborative microprocessors with individual memories
and storage spaces [6,7]. Many of the distributed optimization prob-
lems, such as those mentioned above, can be cast as an optimization
problem in which a network of N agents cooperatively solve

minimize
x̃

NX

i=1

f
i

(x̃), (1)

over a common variable x̃, where f
i

: RM ! R [ {1} is the
local objective function associated with agent i. The function f

i

is
composed of a smooth component g

i

: RM ! R[ {1} and a non-
smooth component h

i

: RM ! R[{1}. Examples of such models
include least squares [8, 9] and regularized least squares [10–12].
The variable x̃ may represent average temperature of a room [5],
frequency-domain occupancy of spectra [12], states of smart grid
systems [13], etc.

This paper studies algorithms that solve (1) in a distributed man-
ner, i.e., agents exchange information only with their immediate
neighbors. Such algorithms are extremely attractive for large scale
networks that are characterized by the lack of centralized access to

information. They also are energy efficient and enhance the sur-
vivability of the network compared with fusion center based pro-
cessing [8]. Existing distributed approaches include incremental
algorithm [14], distributed subgradient descent algorithm [15, 16],
dual averaging method [17], and the alternating direction method
of multipliers (ADMM) [18–20]. While the above algorithms have
been investigated extensively in the literature, we consider a practi-
cal constraint, quantization, on inter-agent communications. This is
largely motivated by a number of physical factors, such as limited
bandwidth, sensor battery power, and computing resources, which
place tight constraints on the rate and form of information exchange
amongst neighboring nodes. Methods that handle this constraint in-
clude quantized incremental algorithm [21], quantized dual averag-
ing [22], and quantized subgradient method [16]. These methods are
appealing due to its simplicity and ability to handle a wide range of
problems. However, they usually proceed slowly to a neighborhood
of the optimal solution and the errors are much undesired when the
network becomes large.

Recently, the ADMM has been shown to be an efficient algo-
rithm for large scale optimizations and used in various applications
such as regression and classification [18]. The authors of [20,23–25]
and [8] have shown its fast convergence rate and resilience to noise,
respectively. Considering that quantization operation is equivalent
to adding some noise to the data, we expect a quantized distributed
ADMM algorithm that works well for Problem (1) in terms of both
consensus error and convergence time.

Our main contribution is to develop and analyze a quantized dis-
tributed algorithm based on the ADMM. Compared with our previ-
ous work [9] where the local objective functions are quadratic, the
problem setting and proof of this paper are more general. Indeed,
the general local objective functions make the problem much harder
because of the possible nonlinearity of their gradients: the effect of
dithered quantization (see, e.g., [26]) is not easy to characterize due
to this nonlinearity. We thereby adopt deterministic quantization in
this paper. We establish that this quantized algorithm converges to a
consensus within finite iterations under similar assumptions in [20]
as long as an initialization condition is satisfied. The initialization
condition is rather mild; simply setting all the variables to 0 suffices.
We derive a tight upper bound for the consensus error which does not
depend on the size of the network. We finally characterize the con-
vergence time, that is, our algorithm converges within log

1+⌘

⌦ iter-
ations, where ⌘ > 0 depends on the network topology and the local
objectives, and ⌦ is a polynomial fraction depending on the quanti-
zation resolution, the distance between initial and optimal variable
values, the local objectives, and the network topology. Numerical
examples validate the fast convergence and small consensus errors
compared with existing algorithms.

Notations: We use 0 to denote the all-zero column vector with
suitable dimensions. 0

K

and I
K

are the K⇥K all-zero and identity
matrix, respectively. Denote kxk

2

as the Euclidean norm of a vector
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x. Given a positive semidefinite matrix G with proper dimensions,
the G-norm of x is kxk

G

=

p
xTGx. Denote �

max

(D) as the
largest singular value of a matrix D and �̃

min

(D) as the smallest
nonzero singular value of D. @f(x) denotes a subgradient of f at x
for a convex function f(x) whilerf(x) denotes the gradient if it is
known to be differentiable.

2. DISTRIBUTED OPTIMIZATION VIA THE ADMM

This section briefly reviews the consensus ADMM (C-ADMM) for
multi-agent distributed optimization where agents can send and re-
ceive real data with infinite precision. We start with the problem
setting and assumptions.

2.1. Problem Setting and Assumptions

Consider a connected network consisting of N agents and E edges,
where each agent i has its own objective function f

i

: RM !
R [ {1}. Assume that the network topology is fixed throughout
the paper. We describe this network as a symmetric directed graph
G
d

= {V,A}, where V is the set of vertices with cardinality |V| =
N and A is the set of arcs with |A| = 2E. Denote M

+

and M�
as the unoriented and oriented incidence matrices with respect to
G
d

[27], respectively. Based on this graph, we would like to develop
in-network algorithms that find the global optimum x̃⇤ (not neces-
sarily unique) minimizing

P
N

i=1

f
i

(x̃).
We make the following assumptions on the local objective func-

tions f
i

, i = 1, 2, · · · , N .

Assumption 1 The local objective functions are proper closed con-
vex functions; for every x̃ where f

i

(x̃) is well defined and f
i

(x̃) <
1, there exists at least one bounded subgradient @f

i

(x̃) such that

f
i

(ỹ) � f
i

(x̃) + (@f(x̃))T (ỹ � x̃), 8ỹ 2 RM .

Moreover, the minimum of (1) can be attained.

Assumption 2 The smooth components have Lipschitz continuous
gradients, i.e., for each agent i there exists a M

gi > 0 such that

krg
i

(x̃)�rg
i

(ỹ)k
2

M
gikx̃� ỹk

2

, 8x̃, ỹ 2 RM .

In addition, the smooth components are strongly convex, i.e., for
each agent i there exists a m

gi > 0 such that

(rg
i

(x̃)�rg
i

(ỹ))T (x̃� ỹ) � m
gikx̃� ỹk2

2

, 8x̃, ỹ 2 RM .

Assumption 3 The non-smooth components are convex.

Note that Assumption 2 implies the differentiability of g
i

. As-
sumptions 1–3 together indicate that Problem (1) has a unique and
attainable solution, i.e., x̃⇤ 2 RM is unique.

2.2. The ADMM for Distributed Optimization: C-ADMM

To solve (1) using the ADMM, we first reformulate it as

minimize
{xi},{zij}

NX

i=1

f
i

(x
i

)

subject to x
i

= z
ij

, x
j

= z
ij

, 8(i, j) 2 A,

(2)

where x
i

2 RM is the local copy of the common optimization vari-
able x̃ at agent i and z

ij

2 RM is an auxiliary variable imposing

the consensus constraint on neighboring agents i and j. As the given
network is connected, the consensus constraint ensures the consen-
sus to be achieved over the entire network, i.e., x

i

= x
j

, 8(i, j) 2
A, which in turn guarantees that (2) is equivalent to (1). A dis-
tributed optimization algorithm then can be obtained by applying
the ADMM update [18] with proper initializations. Specifically, it
has been shown in [20] that the ADMM update of (2) yields

xk+1

i

= (@f
i

+ 2⇢|N
i

|I
M

)

�1

 
⇢|N

i

|xk

i

+ ⇢
X

j2Ni

xk

j

� ↵k

i

!
,

↵k+1

i

= ↵k

i

+ ⇢

 
|N

i

|xk+1

i

�
X

j2Ni

xk+1

j

!

(3)
at node i, where ⇢ is a positive algorithm parameter, N

i

is the set of
neighbors of node i, and ↵k

i

2 RM is the local Lagrangian multiplier
of node i. Obviously, (3) is fully decentralized as the update of xk+1

i

and ↵k+1

i

only relies on local and neighboring information. We refer
to (3) as the C-ADMM.

While the convergence of the C-ADMM under Assumption 1
follows directly from global convergence of the ADMM [18,23,25],
we will state in Theorem 1 the linear convergence of the C-ADMM,
which is the key to proving Theorems 2 and 3. Let x 2 RNM be the
vector concatenating all x

i

and ↵ 2 RNM the vector concatenating
all ↵

i

. Let g(x) =

P
N

i=1

g
i

(x
i

). Define 1

N

2 RNM⇥M as the
matrix composed of N ⇥ 1 blocks of identity matrices I

M

. Then we
have the following theorem.

Theorem 1 ( [20, Theorem 1]) Consider the C-ADMM iteration
(3) that solves (2). If f

i

is purely smooth, i.e., f
i

= g
i

, Assumptions
1 and 2 hold, and ↵0 is initialized in the column space of M�M

T

� ,
then ↵k lies in the columns space of M�M

T

� for k = 0, 1, · · · , and

xk ! 1

N

x̃⇤ and ↵k ! rg(1
N

x̃⇤
) R-linearly,

where x̃⇤ is the unique solution to Problem (1).

Note that simply setting ↵0

= 0 ensures that the initialization
condition, i.e., ↵0 lies in the column space of M�M

T

� , is met. With-
out this initialization condition, the convergence of xk ! 1

N

x̃⇤ is
still true, but the linear convergence rate is not guaranteed.

3. QUANTIZED CONSENSUS ADMM

To model the effect of quantized communication, we assume that
each agent can store and compute real values with infinite preci-
sion; an agent, however, can only transmit quantized data through
the channel which are received by its neighbors without any error.
Given a quantization resolution � > 0, define the quantization lat-
tice in R by

⇤ = {t� : t 2 Z}.
A quantizer is a function Q : R ! ⇤ that maps a real value to
some point in ⇤. Among all deterministic quantizers, we consider
the rounding quantizer that projects y 2 R to its nearest point in ⇤:

Q(y) = t�, if
✓
t� 1

2

◆
�  y <

✓
t+

1

2

◆
�.

Quantizing a vector means quantizing each of its entries. For w 2
RL, L 2 Z+, the rounding quantizer projects w to its nearest point
in ⇤

L; we use w
[Q]

to denote the quantizer output of w. If we define
e = w

[Q]

� w as the quantization error, the quantization operation
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can be viewed as adding the error to the original data, i.e., w
[Q]

=

w + e. Note also that the quantization error is bounded, which is
given by kek

2

 1

2

�

p
L.

Now using the above rounding quantization to modify the C-
ADMM to meet the communication constraint, we obtain the quan-
tized consensus ADMM (QC-ADMM) in Algorithm 1.

Algorithm 1 QC-ADMM for multi-agent distributed optimization
Require: Initialize x0

i

= 0 and ↵0

i

= 0 for each agent i, i =

1, 2, · · · , N . Set ⇢ > 0 and k = 0.
1: repeat
2: every agent i do

xk+1

i

 (@f
i

+ 2⇢|N
i

|I
M

)

�1

 
⇢|N

i

|xk

i[Q]

+ ⇢
X

j2Ni

xk

j[Q]

� ↵k

i

!
,

↵k+1

i

 ↵k

i

+ ⇢

 
|N

i

|xk+1

i[Q]

�
X

j2Ni

xk+1

j[Q]

!
.

(4)

3: set k = k + 1.
4: until a predefined stopping criterion (e.g., a maximum iteration

number) is satisfied.

By writing xk

i[Q]

= xk

i

+ ek
i

where ek
i

denotes the quantization
error, we can view the QC-ADMM as an ideal C-ADMM update on
xk

[Q]

and ↵k followed by adding an error term caused by quantiza-
tion. The rest of this paper is devoted to studying the effect of the
rounding quantization on the C-ADMM, i.e., the QC-ADMM itera-
tion (4).

3.1. Convergence Results: Smooth Objective Functions

We first study the simple case where local objective functions only
contain smooth components, i.e., f

i

= g
i

. To proceed, we state the
following lemma.

Lemma 1 ( [9, Lemma 2]) Given a connected network, if ↵ lies in
the column space of M�M

T

� , then there exists a unique � lying in
the column space of MT

� such that ↵ = M��.

According to Theorem 1, initializing ↵0 in the column space
of M�M

T

� ensures that the C-ADMM yields the optimal values
(1

N

x̃⇤,rg(1
N

x̃⇤
)) with rg(1

N

x̃⇤
) lying in the column space of

M�M
T

� . Therefore, Lemma 1 implies that there exists a unique �⇤

in the column space of MT

� such that rg(1
N

x̃⇤
) = M��

⇤. Define
u⇤

= [

1

2

MT

+

1

N

x̃⇤
;�⇤

]. Our main result is stated as follows.

Theorem 2 Let f
i

= g
i

. Consider the QC-ADMM in Algorithm 1,
and suppose that Assumptions 1 and 2 hold. Then we have

1. Convergence: the sequence (xk

[Q]

,↵k

) generated by (4) con-
verges to a finite value (1

N

x̃⇤
Q

,↵⇤
) as k ! 1, where x̃⇤

Q

is some vector in ⇤

M and not necessarily equal to x̃⇤
[Q]

, and
↵⇤ 2 RNM .

2. Consensus error: the consensus error is bounded by

kx̃⇤
Q

� x̃⇤k
2


 
1

2

+ ⇢
2E

P
N

i=1

m
gi

!
p
M�.

3. Number of iterations: (xk

[Q]

,↵k

) converges within dlog
1+⌘

⌦e
iterations, where ⌘ =

p
1 + � � 1, m

g

, min

i

{m
gi},

M
g

, max

i

{M
gi},

� = min

⇢
�̃2

min

(M�)

3�2

max

(M
+

)

,
8⇢m

g

�̃2

min

(M�)

2⇢2�2

max

(M
+

)�̃2

min

(M�)+3M2

g

�
,

G =


⇢I

2EM

0

2EM

0

2EM

1

⇢

I
2EM

�
,

⌧
0

=

1

4

�

p
M(�

max

(M
+

)

2

+ �
max

(M�)2),

⌦ = max

⇢
3

p
⇢�

max

(M�)(1 + ⌘)2 (ku⇤k
G

+ ⌧
0

)

⌘�
,

3(1 + ⌘) (ku⇤k
G

+ ⌧
0

)p
2⇢E⌘�

�
,

and dye, y 2 R, means the smallest integer that is greater
than or equal to y,

Due to the space limitation, the proof of Theorem 2 is presented
in [28]. Our remarks regarding this theorem follow.

Remark 1 An interesting observation is the parameter ⇢. While ⇢
directly affects the consensus error bound as seen from Theorem 2,
it is not easy to characterize how it affects the convergence time. We
do not study the optimal selection of ⇢ here but simply set ⇢ = 1

in the sequel. Therefore we do not regard ⇢ as a factor affecting
our algorithm’s performance. We refer readers to [18, 20, 29] for
discussions on the effect of ⇢ on the ADMM.

Remark 2 The main result for the rounding quantizer also applies
to other deterministic quantizers as our proof only uses the deter-
ministic scheme and the bounded quantization error. Note that xk

i

in the QC-ADMM must be quantized for the (k + 1)th update at its
own node while the local Lagrangian multiplier ↵k

i

is not. The rea-
son is to guarantee that ↵k

= [↵k

1

;↵k

2

; · · · ;↵k

N

] lies in the column
space of M�M

T

� , and hence the QC-ADMM possesses the linear
convergence rate at each C-ADMM update.

3.2. Convergence Results: General Objective Functions

We now consider the general case where f
i

= g
i

+ h
i

. Even though
the QC-ADMM iterations remain the same as in (4), our previous
proof does not directly apply as the linear convergence of the C-
ADMM is not preserved. We seek to find a class of objective func-
tions such that similar results of Theorem 2 exist. To this end, we
make an additional assumption on the smooth component g

i

:

Assumption 4 The solution to min

x̃

P
N

i=1

g
i

(x̃) is attainable.

This assumption together with Assumption 2 implies that
min

x̃

P
N

i=1

g
i

(x̃) has a unique solution x̃0⇤. We can similarly
define u0⇤

= [

1

2

MT

�1

N

x̃0⇤
;�0⇤

] where �0⇤ is the unique vector in
the column space of MT

� such that M��
0⇤

= rg(1
N

x̃0⇤
). Let

x0k+1

i

denote the (k + 1)th update of the C-ADMM from xk

[Q]

and
↵k where only g

i

’s are involved, i.e.,

x0k+1

i

= (rg
i

+ 2⇢|N
i

|I
M

)

�1

 
⇢|N

i

|xk

i[Q]

+ ⇢
X

j2Ni

xk

j[Q]

� ↵k

i

!
,

and denote the vector concatenating x0k
i

as x0k 2 RNM . Notice that
xk+1

[Q]

and ↵k+1 are still updated using the QC-ADMM. Then we
obtain the following theorem.
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Theorem 3 Consider the QC-ADMM algorithm. Suppose that As-
sumptions 1–4 hold. If kx0k+1 � xk+1k

2

 �

x

for some �

x

> 0

throughout the iterations, we have the same results as Theorem 2
where ⌧

0

is replaced with

⌧
1

=

✓
1

2

�

x

+

1

4

�

p
M

◆r
⇢�2

max

(M
+

) +

1

⇢
�2

max

(M�).

The idea of proof is exactly the same as Theorem 2 hence omit-
ted. We give two commonly used examples of the non-smooth com-
ponents that satisfy the condition kx0k+1 � xk+1k

2

 �

x

(see
also [28] for the proof). They are:

1. `
1

-norm: Let k · k
1

denote the `
1

-norm and define h
i

(x̃) =

⇠
i

kx̃k
1

with ⇠
i

> 0. Define |N |
min

= min

i

{|N
i

|}. Then

kxk+1 � x0k+1k
2



⇣
M
P

N

i=1

⇠2
i

⌘
1/2

m
g

+ 2⇢|N |
min

.

2. Indicator function with compact box sets: For a non-empty
set X , define its indicator function as

IX (w) =

(
0 if w 2 X ,

1 otherwise.

Let h
i

(x̃) = IX (x̃) where X is a nonempty compact
box set, i.e., X = {x̃ 2 RM

: a � x̃ � b} where
a, b 2 RM and � represents the component-wise inequal-
ity. Note that this includes the average consensus prob-
lem with bounded quantization [30] as a special case. Let
t
i

= max{rg
i

(x̃) | x̃ 2 X} which exists due to Assump-
tion 2 and Q

0

= max{kx̃k
2

+

1

2

�

p
M | x̃ 2 X}. Then

kxk+1�x0k+1k
2


NX

i=1

(

p
M+1)t

i

+ (6

p
M + 4)⇢|N

i

|Q
0

m
gi + 2⇢|N

i

| .

4. SIMULATIONS

To construct a connected network with N nodes and E edges, we
first generate a complete graph consisting of N nodes, and then uni-
formly randomly remove N(N�1)

2

�E edges while ensuring that the
network stays connected.

Consider a constrained distributed optimization problem:

minimize
x̃

NX

i=1

|a
i

|kx̃k2
2

+ bT
i

x̃

subject to � 1
3

� x̃

N
� 1

3

,

where x̃ 2 R3, 1
3

2 R3 is the all-one vector, a
i

⇠ N (0, 1), and
b
i

2 R3 whose entries follow N (0, N2

). We use the QC-ADMM
and the quantized dual averaging (Q-DA) method to solve this prob-
lem. Set � = 1. The parameter ⇢ is chosen to be 1 in the QC-
ADMM and the proximal function is chosen as e(x) =

1

2

kxk2
2

for
the Q-DA. Fig. 1 shows the simulation results of the network con-
sisting of N = 40 nodes and E = {300, 600} edges where the
maximum iterative error is defined by max

N

i=1

kxk

i[Q]

� x̃⇤k
2

.
As seen from Fig. 1, the QC-ADMM has a much smaller max-

imum iterative error and faster convergence speed than the Q-DA.
Note that the QC-ADMM converges to a consensus in finite steps
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v
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Q−DA, E=300

QC−ADMM, E=300

Q−DA, E=600

QC−ADMM, E=600

Fig. 1. Performance of the QC-ADMM and the Q-DA where the
plotted values are the average of 100 runs.

while the Q-DA does not ensure the convergence nor the consensus
(see [22]).

Next, we consider a distributed LASSO problem to study the
effect of the quantization resolution on the QC-ADMM:

minimize
x̃

NX

i=1

kA
i

x̃� y
i

k
2

+ �
i

kx̃k
1

,

where x̃ 2 R20 is the unknown variable, A
i

2 R20⇥20 is the linear
measurement matrix of agent i whose elements follow N (0, 1), y

i

2
R20 is the measurement vector of agent i whose elements follow
N (0, N2

), and �
i

2 R+ is a positive weight at agent i and follows
N (0, N2

). Set ⇢ = 1 and run the BQ-CADMM with different �.
Fig. 2 provides the result of a network with N = 30 and E = 200.
The iterative error is defined as 1p

N

kxk

[Q]

� 1

N

x̃k
2

which is equal
to the consensus error when a consensus is reached and � = 0

corresponds to the ideal case where agents can communicate real
values of infinite precision.

0 10 20 30 40 50 60 70 80 90 100
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Iterations

It
e

ra
ti
v
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 e
rr

o
r

 

 

∆=0

∆=0.2

∆=1

∆=5

Fig. 2. Solving distributed LASSO using the QC-ADMM.

As we can see from Fig. 2, the consensus error becomes larger
as � increases. This is not surprising as the higher the quantiza-
tion resolution is, the more information is lost at each update, thus
resulting in a higher consensus error. Meanwhile, the convergence
time decreases when � increases. This can be seen from the upper
bound on number of iterations that guarantees the convergence; that
is, ⌦ decreases as � becomes larger. On the other hand, a larger �
indicates a sparser quantization lattice which makes it easier for the
QC-ADMM to reach a convergence point.
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