
DISTRIBUTED NONCONVEX OPTIMIZATION OVER TIME-VARYING NETWORKS

Paolo Di Lorenzo1 and Gesualdo Scutari2

1 Dept. of Engineering, University of Perugia, Via G. Duranti 93, 06125, Perugia, Italy.
2 Dept. of Industrial Engineering and Cyber Center, Purdue University, West Lafayette, IN 47907, USA.

E-mail: paolo.dilorenzo@unipg.it, gscutari@purdue.edu

ABSTRACT
In this paper we introduce a novel algorithmic framework for non-
convex distributed optimization in multi-agent networks with time-
varying (nonsymmetric) topology. The proposed method hinges on
successive convex approximation (SCA) techniques while leverag-
ing dynamic consensus as a mechanism to diffuse information: each
agent first solves (possibly inexactly) a local convex approximation
of the nonconvex original problem, and then performs local aver-
aging operations. Asymptotic convergence to (stationary) solutions
of the nonconvex problem is established. Finally, the framework is
applied to a distributed nonlinear regression problem.

Index Terms— Distributed optimization, nonconvex optimiza-
tion, time-varying directed graphs.

1. INTRODUCTION

Recent years have witnessed a surge of interest in distributed opti-
mization methods for multi-agent systems. Many such problems can
be mathematically formulated as:

minimize
x

U(x) , F (x) +G(x) (1)

subject to x ∈ K,

where F (x) ,
I∑

i=1

fi(x), (2)

with each fi : RL → R being the smooth (possibly nonconvex, non-
separable) cost function of agent i ∈ {1, . . . , I};G is a convex (pos-
sibly nonsmooth, nonseparable) function; and K ⊆ RL is a closed
and convex set. Usually the nonsmooth term is used to promote some
extra structure in the solution, e.g. sparsity. Network-structured op-
timization problems in the form (1) are found widely in several en-
gineering areas, including sensor networks information processing,
communication networks, multi-agent control and coordination, and
distributed machine learning, just to name a few. Common to these
problems is the necessity of performing a completely decentralized
computation, due to the large size of the network and volume of
data, time-varying network topology, energy constraints, and/or pri-
vacy issues. Motivated by these observations, this paper aims to
develop a distributed solution method for the general class of non-
convex problems (1), in the presence of time-varying non-symmetric
topologies and (possibly) inexact updates.
Related Work: Distributed solution methods for convex in-
stances of Problem (1) have been widely studied in the litera-
ture; they are usually either primal (sub)gradient-based methods

This work has been supported by the USA National Science Founda-
tion under Grants CMS 1218717, CIF 1564044, and CAREER Award No.
1254739.

[1, 2, 3, 4, 5, 6, 7, 8], or primal-dual schemes [9]. All the above
prior art focuses only on convex problems; algorithms developed
therein along with their convergence analysis are not applicable to
nonconvex problems. We are aware of only two works dealing with
distributed algorithms for (special cases of) Problem (1), namely:
[10, 11]. In [10], a consensus-based distributed dual-subgradient
algorithm was studied. However, the method calls for the solution
of possibly difficult nonconvex subproblems, and it does not find
(stationary) solutions of the original problem but those of an auxil-
iary problem, which are not necessarily stationary for the original
problem. In [11], the authors studied convergence of a distributed
stochastic projection algorithm involving random gossip between
agents. However, the scheme is not applicable to Problem (1) when
G 6= 0. The nonconvex optimization problem in the general form
(1) was tackled for the first time in [12]. The framework proposed in
[12], termed as in-Network succEssive conveX approximaTion al-
gorithm (NEXT), hinges on SCA methods [13, 14] while leveraging
dynamic consensus [15] as a mechanism to propagate the needed
information over the network. The contribution of this paper with
respect to [12] is twofold, namely: i) we consider time-varying, non-
symmetric topologies; and ii) we allow (possible) inexact updates
of the algorithm. Asymptotic convergence of this extended frame-
work to (stationary) solutions of problem (1) is then established.
Finally, we customize the proposed framework to solve a distributed
nonlinear regression problem over networks.

2. PROBLEM FORMULATION

Consider a network composed of I autonomous agents aiming to
cooperatively and distributively solve Problem (1).
Assumption A [On Problem (1)]:
(A1) The set K is (nonempty) closed and convex;
(A2) Each fi is C1 (possibly nonconvex) on K;
(A3) Each∇fi is Lipschitz continuous on K;
(A4) Each∇fi is bounded on K;
(A5) G is a convex function (possibly nondifferentiable) with

bounded subgradients on K;
(A6) U is coercive on K, i.e., limx∈K,‖x‖→∞ U(x) = +∞.
Assumption A is standard and satisfied by many practical problems.
For instance, A3-A4 hold automatically if K is bounded, whereas
A6 guarantees the existence of a solution. Note that fi’s need not
be convex. We also make the blanket assumption that each agent i
knows only its own cost function fi, the common G, and the set K.
On network topology: Time is slotted, and at any time-slot n, the
network is modeled as a digraph G[n] = (V, E [n]), where V =
{1, . . . , I} is the vertex set (i.e., the set of agents), and E [n] is the
set of (possibly) time-varying directed edges. The in-neighborhood
of agent i at time n (including node i) is defined as N in

i [n] =

4124978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

{j|(j, i) ∈ E [n]} ∪ {i}. Associated with each graph G[n], we intro-
duce (possibly) time-varying weights wij [n] matching G[n]:

wij [n] =

{
θ ∈ [ϑ, 1] if j ∈ N in

i [n];
= 0 otherwise, (3)

for some ϑ ∈ (0, 1), and define W [n] , (wij [n])Ii,j=1. These
weights will be used later on in the proposed algorithm.
Assumption B (On the network topology):
(B1) The sequence of graphs G[n] is B-strongly connected, i.e.,

there exists an integer B > 0 such that the graph G[k] =

(V, EB [k]), with EB [k] =
⋃(k+1)B−1

n=kB E [n] is strongly con-
nected, for all k ≥ 0;

(B2) Every weight matrixW [n] in (3) satisfies

W [n]1 = 1 and 1TW [n] = 1T ∀n. (4)

Assumption B1 allows strong connectivity to occur over a long time
period and in arbitrary order. Assumption B2 is instrumental to guar-
antee convergence of the algorithm we are going to introduce. Note
also thatW [n] can be time-varying and need not be symmetric.

Our goal is to develop an algorithm that converges to stationary
solutions of Problem (1) while being implementable in the above
distributed setting (Assumptions A and B).

3. INEXACT NEXT ALGORITHM

Devising distributed solution methods for Problem (1) faces two
main challenges, namely: the nonconvexity of the objective func-
tion and the lack of global information at local side. Following the
approach proposed in [12], we combine SCA techniques (Step 1 be-
low) with consensus mechanisms (Step 2), as described next.
Step 1 (local SCA optimization): Each agent i main-
tains a local estimate xi of the optimization variable x that is itera-
tively updated. Solving directly Problem (1) may be too costly (due
to the nonconvexity of fi’s) and is not even doable in a distributed
setting (because of the lack of global knowledge). One may then
prefer to approximate Problem (1), in some suitable sense, in order
to permit each agent to compute locally and efficiently the new it-
eration. Since node i has knowledge only of fi, writing F (xi) =
fi(xi) +

∑
j 6=i fj(xi), leads naturally to a convexification of F

having the following form: i) at every iteration n, the (possibly)
nonconvex fi(xi) is replaced by a strongly convex surrogate, say
f̃i(•;xi[n]) : K → R, which may depend on the current iterate
xi[n]; ii) and

∑
j 6=i fj(xi) is linearized around xi[n] (because it

is not available at node i). More formally, the proposed updating
scheme reads: at every n, given the local estimate xi[n], each agent
i solves the following strongly convex optimization problem [12]:

x̂i(xi[n]) (5)

, argmin
xi∈K

f̃i(xi;xi[n]) + πi(xi[n])T (xi − xi[n]) +G(xi),

where πi(xi[n]) is the linearization of
∑

j 6=i fj(xi) at xi[n], given
by

πi(xi[n]) ,
∑
j 6=i

∇xfj(xi[n]). (6)

Note that x̂i(xi[n]) is well-defined, because (5) has a unique solu-
tion. The idea behind the iterate (5) is to compute stationary solu-
tions of Problem (1) as fixed-points of the mappings x̂i(•). Postpon-
ing the convergence analysis, a first natural question is how to choose
the surrogate function f̃i(•;xi[n]). The next proposition addresses
this issue and establishes the connection between the fixed-points of
x̂i(•) and the stationary solutions of Problem (1) [14].

Proposition 1 Given Problem (1) under A1-A6, suppose that each
f̃i satisfies the following conditions:

(F1) f̃i(•;y) is uniformly strongly convex on K;
(F2) ∇f̃i(x;x) = ∇fi(x) for all x ∈ K;
(F3) ∇f̃i(x; •) is uniformly Lipschitz continuous on K.
Then, the set of fixed-point of x̂i(•) coincides with that of the sta-
tionary solutions of (1). Therefore, x̂i(•) has a fixed-point.

Conditions F1-F3 are quite natural: f̃i should be regarded as a (sim-
ple) convex, local, approximation of fi at the point x that preserves
the first order properties of fi. Several choices are possible for a
given fi, the appropriate one depends on the problem at hand and
computational requirements; some examples are discussed at the end
of this section. Step 2 (consensus update): To force the
asymptotic agreement among the xi’s, a consensus-based step is em-
ployed on x̂i(xi[n])’s. Each agent i updates its xi as

xi[n+ 1] =
∑

j∈N in
i [n]

wij [n] x̂j(xj [n]), (7)

where (wij [n])ij is any set of weights satisfying Assumption B2.
Since the weights are constrained by the network topology, (7) can
be implemented via local message exchanges.
Toward a fully distributed implementation: The
computation of x̂i(xi[n]) is still not fully distributed, because the
evaluation of πi(xi[n]) in (5) would require the knowledge of all
∇fj(xi[n]), which is not available locally at node i. To cope with
this issue, the proposed approach consists in replacing πi(xi[n])
in (5) with a local estimate π̃i[n] that asymptotically converges to
πi(xi[n]), and solve instead [12]:

x̃i(xi[n], π̃i[n]) (8)

, argmin
xi∈K

f̃i(xi;xi[n]) + π̃i[n]T (xi − xi[n]) +G(xi)︸ ︷︷ ︸
, Ũi(xi;xi[n],π̃i[n])

.

Rewriting πi(xi[n]) as

πi(xi[n]) = I ·

(
1

I

I∑
j=1

∇fj(xi[n])

)
︸ ︷︷ ︸

,∇f(xi[n])

−∇fi(xi[n]), (9)

we propose to update π̃i[n] mimicking (9):

π̃i[n] , I · yi[n]−∇fi(xi[n]), (10)

where yi[n] aims to asymptotically track ∇f(xi[n]). Leveraging
dynamic average consensus methods [15], this can be done updating
yi[n] according to the following recursion:

yi[n+ 1],
∑

j∈N in
i [n]

wij [n]yj [n] + ∆ri(xi[n+ 1],xi[n]) (11)

with yi[0] , ∇fi(xi[0]), and

∆ri(xi[n+ 1],xi[n]) = ∇fi(xi[n+ 1])−∇fi(xi[n]).

In fact, if the sequences {xi[n]}n are convergent and consensual, it
holds

∥∥yi[n]−∇f(xi[n])
∥∥ −→

n→∞
0 [16] and thus

‖π̃i[n]− πi(xi[n])‖ −→
n→∞

0.

Note that the update of yi[n], and thus π̃i[n], can be now performed
locally with message exchanges in the neighborhoodNi[n].

4125

Algorithm 1: Inexact NEXT
Data : xi[0] ∈ K, yi[0] = ∇fi[0], and π̃i[0] = Iyi[0] − ∇fi[0],
∀i = 1, . . . , I . Set n = 0.
(S.1) If x[n] satisfies a termination criterion: STOP;
(S.2)Local inexact SCA: Each agent i

(a) solves (8) with accuracy εi[n]: Find a xinxi [n] ∈ K
s.t. ‖x̃i[n]− xinxi [n]‖ ≤ εi[n];

(b) updates its local variable zi[n]:

zi[n] = xi[n] + α[n]
(
xinxi [n]− xi[n]

)
(S.3) Consensus update: Each agent i collects data from its
neighbors and updates xi[n], yi[n], and π̃i[n] as:

(a) xi[n+ 1] =
∑

j∈N in
i [n]

wij [n]zj [n]

(b) yi[n+ 1] =
∑

j∈N in
i [n]

wij [n]yj [n] + ∆ri(xi[n+ 1],xi[n])

(c) π̃i[n+ 1] = I · yi[n+ 1]−∇fi[n+ 1]

(S.4) n← n+ 1, and go to (S.1).

Inexact updates: In many situations (e.g., in the case of large-
scale problems), it can be useful to further reduce the computational
effort to solve the subproblems in (8) by allowing inexact computa-
tions xinxi [n] of x̃i[n] in (8), i.e.,

‖xinxi [n]− x̃i[n]‖ ≤ εi[n], (12)

where εi[n] measures the accuracy in computing the solution. This is
a noticeable feature of the proposed algorithm that allows to control
the cost per iteration without affecting too much, experience shows,
the empirical convergence speed.

We are now in the position to formally introduce the Inexact
NEXT algorithm, as given in Algorithm 1. The algorithm builds on
the iterates (8), (7) (wherein each x̂j is replaced by x̃j), the inexact
computation (12), and (10)-(11), introduced in the previous section.
Note that in S.2, in addition to solving (inexactly) the strongly con-
vex optimization problem (8), we also introduced a step-size in the
iterate. The convergence properties of Algorithm 1 are stated next.

Theorem 1 ([16]) Let {x[n]}n , {(xi[n])Ii=1}n be the sequence
generated by Algorithm 1, and let {x[n]}n , {1/I

∑I
i=1 xi[n]}n

be its average. Suppose that i) Assumptions A and B hold; and ii)
the step-size sequence {α[n]}n is such that α[n] ∈ (0, 1], for all n,∑∞

n=0 α[n] =∞ and
∑∞

n=0 α[n]2 <∞, (13)

and the following holds∑∞
n=0 α[n] εi[n] <∞, ∀i = 1, . . . , I . (14)

Then, (a) [convergence]: the sequence {x[n]}n is bounded
and all its limit points are stationary solutions of Problem (1);
(b) [consensus]: all the sequences {xi[n]}n asymptotically
agree, i.e., ‖xi[n]− x[n]‖ −→

n→∞
0, for all i = 1, . . . , I .

As expected, in the presence of errors, convergence of Algorithm 1
is guaranteed if the sequence of approximated problems in S.2(a) is
solved with increasing accuracy. Note that, in addition to require

εi[n] → 0, condition (14) imposes also a constraint on the rate by
which εi[n] goes to zero, which depends on the rate of decrease of
α[n]. An example of error sequence satisfying the above condition
is εi[n] ≤ ciα[n], where ci is any finite positive constant [14]. Inter-
esting, such a condition can be forced in Algorithm 1 in a distributed
way, using classical error bound results in convex analysis; see, e.g.,
[17, Ch.6, Prop. 6.3.7].
On the choice of the surrogates f̃i: Adapting to our
setting the approximation functions introduced in [13, 14], the fol-
lowing examples are instances of f̃i satisfying F1-F3.
• When fi has no special structure to exploit, the most obvious
choice for f̃i is the linearization of fi at xi[n]:

f̃i(xi;xi[n]) = fi(xi[n]) +∇fi(xi[n])T (xi − xi[n])

+
τi
2
‖xi − xi[n]‖2, (15)

where τi is any positive constant. The proximal regularization guar-
antees that f̃i is strongly convex. The above surrogate is essentially a
reminiscence of the approximation of the objective function used in
proximal-gradient algorithms. Note however that standard proximal-
gradient algorithms are not directly applicable to Problem (1), as
they are not distributed.
• At another extreme, if fi is convex, one could just take

f̃i(xi;xi[n]) = fi(xi) +
τi
2
‖xi − xi[n]‖2, (16)

with any τi ≥ 0 (τi can be set to zero if fi is strongly convex).
This choice gives rise to the first distributed nonlinear Jacobi type
method for the constrained minimization of U .
• Between the two “extreme” solutions proposed above, one can
consider “intermediate” choices. For example, if fi is convex, mim-
icking Newton schemes, one can take f̃i as a second order approxi-
mation of fi, i.e.,

f̃i(xi;xi[n]) = fi(xi[n]) +∇fi(xi[n])T (xi − xi[n])

+
1

2
(xi − xi[n])T∇2fi(xi[n])(xi − xi[n]).

(17)

• Another “intermediate” choice, relying on a specific structure of
each fi that has important applications is the following. Suppose
that fi is convex only in some components of xi; let us split xi ,
(xi,1,xi,2) so that fi(xi,1,xi,2) is convex in xi,1 for every xi,2 such
that (xi,1,xi,2) ∈ K, but not in xi,2. A natural choice for f̃i is then:
given x[n] , (xi,1[n],xi,2[n]),

f̃i(xi;xi[n]) = f̃
(1)
i (xi,1;xi,2[n]) +

τi
2
‖xi,2 − xi,2[n]‖2

+∇xi,2fi(xi[n])T (xi,2 − xi,2[n])
(18)

where f̃ (1)
i (•;xi,2[n]) is any function still satisfying F1-F3 (written

now in terms of xi,1 for given xi,2). Any of the choices in (15)-
(17) are valid for f̃ (1)

i (•;xi,2[n]). The rationale behind (18) is to
preserve the favorable convex part of fi with respect to xi,1 while
linearizing the nonconvex part.
• Consider the case in which f̃i is block-wise convex but not convex
on xi. Without loss of generality, let us assume that f̃i is convex in
the two block-variables xi,1 and xi,2 partitioning xi = (xi,1,xi,2),
but not jointly (the case of more than two blocks can be similarly
considered). Then a natural choice for f̃i is

f̃i(xi;xi[n]) = fi(xi,1,xi,2[n]) + fi(xi,1[n],xi,2)

+
τi
2
‖xi − xi[n]‖2. (19)

4126

50 100 150 200 250 300
10

−6

10
−4

10
−2

10
0

10
2

Number of local information exchanges

J[
n]

 a
nd

 D
[n

]

J[n] ; B = 1
J[n] ; B = 2
J[n] ; B = 4
D[n] ; B = 1
D[n] ; B = 2
D[n] ; B = 4

Fig. 1: Distance from stationarity (J [n]) and disagreement (D[n])
versus number of local information exchanges.

Note that, in the same spirit of the previous example, instead of
fi(•,xi,2[n]) and fi(xi,1[n], •) one can use any surrogate satisfying
F1-F3 in the intended variables.
• As last example, consider the case in which f(xi) is the composi-
tion of two functions, i.e., f(xi) = q(h(xi)), where q is convex. In
this case, a possible choice for f̃i is to preserve the convexity of q,
while linearizing h. It is easy to see that the resulting surrogate, i.e.

f̃i(xi;xi[n]) = q
(
h(xi[n]) +∇xih(xi[n])T (xi − xi[n])

)
+
τi
2
‖xi − xi[n]‖2, (20)

satisfies properties F1-F3 in Proposition 1.

4. DISTRIBUTED CONSTRAINED NONLINEAR
REGRESSION OVER NETWORKS

We now customize the proposed framework to solve a nonlinear
regression problem. Each agent i collects a set of Mi measure-
ments yi,m, which are related to some parameter x ∈ RL of interest
through the following nonlinear observation model:

yi,m = hi(x;zi,m) + vi,m, (21)

for all i = 1, . . . , I, m = 1, . . . ,Mi, where hi : RL → R,
zi,m ∈ RP are known regression vectors, and vi,m represents ad-
ditive observation nose. The goal of the network is to solve the fol-
lowing nonlinear least squares problem:

minimize
x∈K

I∑
i=1

Mi∑
m=1

(
yi,m − hi(x;zi,m)

)2
+
λ

2
‖x‖22 (22)

where λ > 0 andK is a bounded set, which the parameter x belongs
to. Problem (22) is clearly an instance of Problem (1), with

fi(x) =

Mi∑
m=1

(
yi,m − hi(x;zi,m)

)2 and G(x) =
λ

2
‖x‖22. (23)

To apply Algorithm 1, we need to specify a valid surrogate f̃i(x;x[n]),
to be used in (8) (i.e., step S.2(a) of Algorithm 1). Since fi in (23)
is a composition of functions, we can exploit the approximation in
(20). Thus, a possible choice for the surrogate function is:

f̃i(x,x[n])=

Mi∑
m=1

(
yi,m − h̃i(x;x[n],zi,m)

)2
, (24)

where h̃i(x;x[n],zi,m) = ∇xhi(x[n];zi,m)T (x − x[n]) +
hi(x[n];zi,m) is the linearization of hi(x;zi,m) around x[n].

50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of local information exchanges

N
M

S
E

B = 1

B = 2

B = 4

Fig. 2: NMSE versus number of local information exchanges.

Numerical example: We consider a directed network composed
of I = 30 nodes with B-strongly connected graph topology. The
nonlinear functions hi(x;zi,m) in (21) have a sigmoidal shape, i.e.
hi(x;zi,m) = 1/(1 + exp(−zT

i,mx)). The observations at each
node are generated from (21), using a random vector x0 ∈ K =
[0, 1]10, Gaussian random input vectors zi,m with identity covari-
ance matrix, and Gaussian observation noise with variance σ2

v =
10−6. We consider Mi = 10, for all i, and λ = 0.05. We mea-
sure the progress of Algorithm 1 using the following two merit func-
tions: J [n] , ‖x̄[n] − ΠK(x̄[n] − ∇U(x̄[n]))‖∞ and D[n] ,
1

I

∑
i ‖xi[n]−x̄[n]‖2, where ΠK(y) denotes the orthogonal projec-

tion onto the convex and closed setK. Note that J [n] = 0 if and only
if x̄[n] is a stationary solution of Problem (22); therefore J [n] mea-
sures the progress of the algorithm toward stationarity. The sequence
D[n] measures the disagreement among the agents’ variables. We
also report the normalized mean squared error (NMSE), evaluated
at x̄[n], i.e. NMSE[n] = ‖x̄[n]−x0‖2

‖x0‖2
. In Fig. 1 we plot J [n] and

D[n] versus the number of communication exchanges per node. Fig.
2 shows NMSE[n] versus the number of exchanged messages. The
figures are reported for different values of the uniform graph connec-
tivity coefficient B (the case B = 1 corresponds to a fixed graph,
and is reported as a benchmark), and are averaged over 100 indepen-
dent noise realizations. The algorithm is initialized at random, and
uses the diminishing step-size rule α[n] = α[n−1](1−µα[n−1]),
n ≥ 1, with α[0] = 0.01 and µ = 0.01. The optimization in (8)
(Step S2(a) of Algorithm 1) leads to a box-constrained least-square
problem that is solved using the quadprog Matlab function, reduc-
ing the error on the solution obtained at each iteration with a rate
proportional to α[n]. Both figures illustrate the convergence of the
algorithm to a stationary solution of (22), thus confirming the theo-
retical results of Theorem 1. Furthermore, as expected, larger values
of B lead to a lower practical convergence speed, due to the slower
diffusion of information over the network.

5. CONCLUSIONS
We introduced a novel algorithmic framework for nonconvex dis-
tributed optimization in multi-agent networks with time-varying
(nonsymmetric) topology. The proposed method exploits SCA
techniques while leveraging dynamic consensus as a mechanism to
diffuse the needed information over the network. Asymptotic con-
vergence of the proposed method was established, in the presence
of time-varying directed topologies and inexact updates. Finally, the
proposed framework was applied to solve a distributed constrained
nonlinear least squares problem over networks.

4127

6. REFERENCES

[1] A. Nedić and A. Ozdaglar, “Distributed subgradient methods
for multiagent optimization,” IEEE Transactions on Automatic
Control, vol. 54, no. 1, pp. 48–61, Jan. 2009.

[2] A. Nedić, A. Ozdaglar, and P. Parillo, “Constrained consensus
and optimization in multi-agent networks,” IEEE Transactions
on Automatic Control, vol. 55, no. 4, pp. 922–938, 2010.

[3] A. Chen and A. Ozdaglar, “A fast distributed proximal gradi-
ent method,” in 50th Allerton Conference on Communication,
Control and Computing, Monticello, IL, USA, Oct. 1-5 2012.

[4] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for
distributed optimization and learning over networks,” IEEE
Transactions on Signal Processing, vol. 60, no. 8, pp. 4289–
4305, August 2012.

[5] P. Di Lorenzo and A. H. Sayed, “Sparse distributed learning
based on diffusion adaptation,” IEEE Transactions on Signal
Processing, vol. 61, no. 6, pp. 1419–1433, March 2013.

[6] D. Jakovetic, J. Xavier, and J. M. F. Moura, “Fast distributed
gradient methods,” IEEE Transactions on Automatic Control,
vol. 59, no. 5, pp. 1131–1146, May 2014.

[7] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum dis-
tributed dual averaging for convex optimization,” in IEEE Con-
ference on Decision and Control, Maui, Hawaii, USA, Dec.
10–13 2012.

[8] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual aver-
aging for distributed optimization: Convergence analysis and
network scaling,” IEEE Transactions on Automatic Control,
vol. 57, no. 3, pp. 592–606, March 2012 2012.

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Dis-
tributed optimization and statistical learning via the alter-
nating direction method of multipliers, ser. Foundations and

Trends in Machine Learning. Boston-Delft: NOW Publish-
ers, 2011, vol. 3, no. 1.

[10] M. Zhu and S. Martı́nez, “An approximate dual subgradient al-
gorithm for distributed non-convex constrained optimization,”
IEEE Transactions on Automatic Control, vol. 58, no. 6, pp.
1534–1539, June 2013.

[11] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent
projected stochastic gradient algorithm for non-convex opti-
mization,” IEEE Transactions on Automatic Control, vol. 58,
no. 2, pp. 391–405, Feb. 2013.

[12] P. Di Lorenzo and G. Scutari, “Distributed nonconvex opti-
mization over networks,” in IEEE Workshop on Computational
Advances in Multi-Sensor Adaptive Processing, Dec. 13–16,
2015.

[13] G. Scutari, F. Facchinei, P. Song, D. P. Palomar, and J.-S. Pang,
“Decomposition by partial linearization: Parallel optimization
of multiuser systems,” IEEE Transactions on Signal Process-
ing, vol. 63, no. 3, pp. 641–656, Feb. 2014.

[14] F. Facchinei, G. Scutari, and S. Sagratella, “Parallel selective
algorithms for nonconvex big data optimization,” IEEE Trans-
actions on Signal Processing, vol. 63, no. 7, pp. 1874–1889,
April 2015.

[15] M. Zhu and S. Martı́nez, “Discrete-time dynamic average con-
sensus,” Automatica, vol. 46, no. 2, pp. 322–329, Feb. 2010.

[16] P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex
optimization,” to appear on IEEE Transactions on Signal and
Information Processing over Networks, 2016.

[17] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational
Inequalities and Complementarity Problem. New York:
Springer-Verlag, 2003.

4128

