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ABSTRACT

This paper introduces a novel framework for combining multiple
weighted graphs into a single optimized weighted graph. In our
framework, we first develop a statistical formulation for the graph
combining problem with a maximum likelihood criterion, and derive
its optimality conditions. We then use these conditions to formulate
the deterministic graph combining problem and propose a solution.
Our experimental results show that the proposed solution provides
better modeling compared to the commonly used averaging method.
The introduced framework has various applications in signal pro-
cessing and machine learning.

Index Terms— Graph learning, graph combining, statistical
learning, optimization, graphical modeling, graph signal processing.

1. INTRODUCTION

In many data-oriented applications, graphs provide a generic tool to
model relations between different data sources (or data points). For
such applications, a weighted graph can be employed to represent
similarities between data sources where nodes of the graph denote
sources, and weighted edges indicate degree of similarity between
them. Multiple graphs can also be used to describe the overall rela-
tions between sources, especially when the data of interest is high-
dimensional. In a social network, for example, multiple graphs can
connect a number of people where each graph is constructed based
on a different feature (e.g., friendship, political view and geograph-
ical location). In signal processing, multiple graphs can be used for
graphical modeling of a random signal having a mixture distribution
(e.g., Gaussian mixture models).

In this work, we are interested in graph combining which we
define as designing an optimized weighted graph from multiple
weighted graphs. Graph combining can be useful in various cases.
For instance, given multiple graphical models for a set of signals
(or data), one would like to use an optimized aggregate model that
is close to the original models with respect to a metric. Especially
when a signal model is uncertain (or unknown), combining multiple
candidate models would allow to design a model that is robust to
model uncertainties. Using a single (optimized) model would also
be advantageous in terms of computational complexity. Moreover,
graph combining can be used to summarize a dataset consisting of
multiple graphs into a single graph, which is appealing for graph
visualization in data analytics.

In this paper, we propose a novel framework for graph combin-
ing. In our framework, we first present a two-step statistical for-
mulation for the graph combining problem with a maximum likeli-
hood criterion. Specifically, we define (i) common graph transform
(CGT) estimation and (ii) common graph frequency (CGF) estima-
tion problems and derive their optimality conditions. Exploiting the
resulting optimality conditions, we then formulate the deterministic
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graph combining problem and propose a two-step solution that first
estimates the best CGT and then finds the optimal combined graph
by estimating the best CGF. To the best of our knowledge, this is the
first systematic approach to graph combining problem with a maxi-
mum likelihood criterion.

There is only limited work on graph combining in the literature.
The authors in [1, 2] propose graph combining to improve spec-
tral clustering and semi-supervised learning with multiple graphs,
respectively. However, their approaches are based on weighted aver-
aging of graphs, which have no theoretical guarantees. Additionally,
our CGT estimation problem is closely related to common principal
component (CPC) estimation originally introduced in [3] where the
goal is finding an orthogonal matrix that jointly diagonalizes multi-
ple covariance matrices in maximum likelihood sense. An iterative
solution to this problem is developed in [4]. A variation of the CPC
problem was later studied in blind source separation [5], and the
JADE algorithm [6] was introduced for joint diagonalization with a
Frobenius norm criterion. Algorithmically, our solution to the CGT
estimation problem is very similar to the ones in [4, 6] which are
all based on Jacobi-like iterations [7]. The main difference is the
optimality conditions derived for CGT estimation, which lead to a
different metric to optimize.

The rest of the paper is organized as follows. Section 2 presents
the graph combining framework. In Section 3, we introduce the pro-
posed solution. Experimental results are presented in Section 4, and
Section 5 draws some conclusions.

2. GRAPH COMBINING FRAMEWORK

2.1. Notation and Basic Assumptions

In this paper, we are interested in combining undirected, weighted
graphs with no self-loops. We are given k graphs {G;(V, &, W)},
with a fixed set of nodes V where for graph G;, &; is the set of edges,
and W is the weighted adjacency matrix with non-negative entries.
If there is an edge between nodes j and [, the element at j-th row
and [-th column of W; is greater than zero (i.e., (W;);; > 0),
otherwise (W;);; = 0. Since graphs are undirected, W is a sym-
metric matrix. The graph G, can also be characterized using a graph
Laplacian matrix, L; = D; — W, where D) is the diagonal degree
matrix such that the j-th diagonal element, (D;);;, is the sum of
weights of edges incident to j-th node in V. For an undirected
graph G(V, £, W) with d nodes, the corresponding (d x d) graph
Laplacian matrix L is symmetric, positive semidefinite and singular.
Thus, it has a complete set of orthonormal eigenvectors {u,; }j-l:l,
whose associated eigenvalues are 0 = A1 < A2 < ... < A\g. For
connected graphs, only the first eigenvalue is equal to zero (i.e.,
0 = A1 < \2) and the corresponding eigenvector is u; = (1/+/d)1
where 1 is the all one vector of size d. By eigen-decomposition of
L = UAU?, we obtain orthogonal graph transform matrix U and
diagonal graph frequency matrix A.
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The formulation is based on following basic assumptions:
e Nodes: All k£ graphs use the same node set } with d nodes.
e Connectivity: Each of k graphs is a connected graph.

e Similarity: Graph weights represent similarity between nodes.

2.2. Statistical Formulation and Optimality Conditions

In what follows, we present a two-step statistical formulation for
combining k graph Laplacian matrices L1, Lo, ..., Lg (i.e., graphs)
into a single graph Laplacian L = UAU' and derive optimality
conditions based on a maximum likelihood criterion. In the first
step, we formulate the common graph transform (CGT) estimation
problem for finding the best CGT (U) and associated k frequency
matrices {A;}¥_,. In the second step, we use the solution from
the CGT step, and formulate the common graph frequency (CGF)
estimation problem to find the best frequency matrix A combining
{A;}F_;. Note that, the CGT estimation is similar to the common
principal component (CPC) problem which deals with optimizing a
orthogonal matrix that jointly diagonalizes multiple covariance ma-
trices [3]. Since our formulation is based on graph Laplacian matri-
ces, the CGT problem is inherently different and leads to different
optimality conditions.
Maximum Likelihood (ML) Criterion: To derive the ML crite-
rion, we choose the following data model associated to k graph
Laplacians, {L;}*_,. Let d-variate Gaussian random vectors x; ~
N(0,L}) fori = 1,2, ..., k be independently distributed as
1 1,

p(xq) = Wexp <—§X¢Lixz') , (D
where ||+ is the pseudo-determinant operator and L] is the pseudo-
inverse of L;. Since the random vector x; is parametrized by the
graph Laplacian L;, it has a degenerate multivariate Gaussian distri-
bution with the singular covariance Lj. Consisting 7; =n; + 1 inde-
pendent random vectors having distribution p(x;), the random ma-
trix X; = [xgl)xf) - -xiﬁ”] leads to the random covariance matrix
S:i=(1/ ni)X¢X§. Then, the corresponding random scatter matrix
S; = n;S; has a Wishart distribution, S; ~ )/V(L;r7 n;), which is a
common data model used in covariance estimation. In our statistical
formulation, we also use this data model. Since S; are independent
fori = 1,2, ..., k, the likelihood function of L1, Lo, ..., L is

k n; )
P8I = [TOLT oo -5 @s)) - @

where C; is a constant that does not depend on L;. Thus, we can
write negative log-likelihood objective function as follows,
k
)) = _ni (loglLf | + Tr (L:S) . (3)
i=1
Common Graph Transform (CGT) Estimation : To find the best
CGT (U), we define the CGT hypothesis as follows,

Heer : L = UAUY fori=1,2,...k 4)
where U is the orthogonal matrix and {Ai}le is the set of diagonal
frequency matrices that we want to estimate. This hypothesis allows
different frequency matrices, so it provides a larger degree of free-
dom in estimating U. Assuming that the CGT hypothesis stated in
(4) holds, we can rewrite NLL objective in (3) as

NLL(Ly, Lo, ..., L

k
NLL(U, {A:}i=1) = ) ni (log|Af |+ + Tr (A;U'S;U)) (5)

i=1
=0fori=1,..,

Since, >\<1i) k and u; = (1/+/d)1 by properties of

graph Laplacian matrices We can simplify (5) as follows,

= Zmz (log 1/)\( 2

where u; is the j-th column of U, and )\;’ is the (j, 7)-th entry

of A;. U and X denote variables {u;}%_, and (AW )\(1)}1 1
respectively. Thus, the maximization of likelihood function in (2)
under hypothesis ’HCGT is equivalent to the following problem:

ZnZZ( log( >\<Z) )+ )\( )utS uj)

NLL(T A uis)  ©

minimize
U,x

(O]

1 1=y

0 1#]

The optimization problem in (7) is non-convex due to its orthogonal-

ity constraints. So in the following, we derive necessary conditions

for local optimality using the Lagrange multiplier theorem [8]. The

Lagrangian function associated to (7) is

+Z/,L[ ulul— —O—QZm]ulu] ®)

2<1<j<d

subjectto  uju; = {

L£(U, X, p) = NLL(O

where p denotes Lagrange multlphers {m} o and {1, }2<i<j<a-
Note that the last summation term of (8) is simplified by exploit-
ing the symmetry between multipliers (y;,; = pt;,1). Taking partial
derivatives with respect to primal variables (fJ, 5\) and equating to
zero, we obtain following system of equations:

~x k
9L(O A p) _ 3 ( I >
e = Mg T -+ ujSiuj =0 (9)
Y P Al
OL(U, A,
% ng Sius + 2w + 23 s =0
J i=1 2<i<j<d
10)
Multiplying (10) with u§~ from the left, we get
k
> 2n 2wl Siuy + 205 =0 (11)
=1

and by reorganizing (9), we have
1/2 = ujSiu, (12)
In (11), replacing u}S;u; with 1/>\;i) leads to

—Zni forj=2,...,d (13)
By multiplying (10) with (1/2)u}, from the left, we get
k
an)\gl)uzslu] —+ Hh,j = 0 ] = 27 .y

i=1
Switching h and j indexes leads to

d, h#j (14)

k

S A uwiSiun + i =0 h=2,..d j#h (15
i=1

Subtracting (15) from (14) results in the optimality condition for

common graph transform estimation,
k

ul, <Z ni(AS — A;?))si> w=0 j,h=2.,d j#h (16)
i=1

where A" = 1/(uS;u;) and A} = 1/(u},S;up) by (12).
Common Graph Frequency (CGF) Estimation : To find the best
CGF (A), we define the CGF hypothesis as follows,

Heogr : Li = UAU"  fori=1,2,..,k (17)
where U is an optimal solution to the CGT problem in (7). A =
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diag([)\h ceey Ad
suming that Hcer holds, we can rewrite NLL(L1, Lo, ...,
NLL(A) in (3) as follows,

]) is the diagonal matrix we want to estimate. As-
L) =

k
NLL(A) = > s (1og|A+|+ + Ty (AﬂtSifJD .y
i=1
Since the first eigenvalue of a graph Laplacian matrix is zero, we
simplify above equation as follows
NLL(Ag, ..., A anz log(1/X;) + A\;058:4;)  (19)

where 1; is the j-th column of U, and A; is the (4, j)-th entry of A.
Taking the derivative of (19) with respect to A\; and equating to zero,
k
NLL(A2, ..
% =3 <——+u s, uj) —0. (20
Aj p—
Since 1/ )\; D= ] £S;1; from (12), we can write the optimality con-
dition for common graph frequency estimation as follows,
k (@)
T i/
X 2_17/] j=23,...d. 1)
Aj D iy M
where A = diag([0, Az, ..., Ad]).

2.3. Deterministic Formulation of Graph Combining Problem

The above statistical formulation poses the problem of finding a
combined graph 49 using k groups of data ({S; }%_,), each of which
is assumed to be generated based on a graph. Yet, our main goal is
combining k deterministic graphs, L1, Lo, ..., L. In the following,
we propose a model-based formulation by exploiting the optimality
conditions derived in our statistical formulation. However, the opti-
mality conditions stated in (16) and (21) are satisfied if L =UAU!
maximizes (2) under the assumptions given by Hcagr and Hegr.
In practice, these assumptions generally do not hold. In particular,
for a given set of graph Laplacian matrices, there may be no or-
thogonal matrix that satisfies Hcar. So, in general, we can only
approximate the best common graph transform. In order to find the
best CGT for given k£ graph Laplacian matrices, {Li}le, we replace
sample covariance S; with the exact covariance Lj‘ in (16), and also
remove n; since Lj does not depend on n;. The resulting term is
used as the objective in following minimization problem,

k
minimize uj, <Z(/\§z) _ )\S))Lj—> w jh=2,.d
uyp,u ;
J = o 22)
1 h=4i D =1/(u'Lu;
subjectto  uju; = J 7 /(uz eruJ)

which is a non-convex problem because of the orthogonality con-
straints. In the next section, we provide an iterative algorithm that
guarantees convergence to a locally optimal solution for CGT.

To find the best CGF for given k graph Laplacian matrices,
{L;}F_,, we reformulate (20) by replacing S; with L and by re-
moving n;. Thus, we get the following new optimality condition,

I 11 1
N TR0 T oW j=28d @Y
i=1 ) i=1

where 0 is the j-th column of the optimized CGT matrix, U. Ba-
sically, this condition suggests an averaging of frequency estimates
obtained by solving optimization problem (22). However, the result-
ing frequency matrix A = diag([0, A2, ..., Ag]) may not construct
a graph Laplacian matrix using UAU, because hypotheses Hoar
and Hcgr do not hold in general. Therefore, we propose to find

: function GRAPH COMB[NING({L }1 1, Ui, T', €)
U« CGTA({L i—1> Uini, €)
S ik ULio
A1« 0 {>\ }dzg —{1/(2);;} 2
{(A)y; }?:1 — X }?:1 o
L* < Solve the problem in (24) with parameters U, A and I

return L™
end function

PR N RN

Fig. 1: Graph Combining Algorithm

: function CGTA({L; }le s Unit, €)

1

2 U «+ Uit

3 do

4 Upe < U

5 for all (h, j) pairs suchthat2 < h,j < dand h # j do
6: up (—U(:,h) u; (—U(,j)

. k uz’L:ruh, uhL u; k
T {Aidic, < {[ u?Lj’uh u; L'l}' i1
8: R < BEST ROTATION({A; }F_,, ¢)

9: V «+— [Llh, ll]']R
10: U(:,h) < V(:;,1) U(:,j) «+ V(;,2)
11: end for

12: while ||[U — Upre||» > e (stopping criterion)
13: return U
14: end function

15: function BEST ROTATION({A; }¥_ |, €)

16 Q<1
17: do
18: Qe+~ Q T+ 0
19: a1 < Q(:,1) a2 + Q(:,2)
20: for i =1:kdo )
21: 6 1/ (b Avar) 88« 1/(alAsq2)
22 T « T+ 0V — i) A,
23: end for
T(1,2

24: 6+ %arctan (W)

. cos(0) —sin(0)
25 Q« [ sin(6) cos(0)

26: while [|Q — Q|| » > € (stopping criterion)
27: return Q

28: end function

Fig. 2: Common Graph Transform Algorithm (CGTA)

the closest graph Laplacian matrix to UAU? in maximum likeli-
hood sense. Thus, we formulate the following convex optimization
problem,
maximize log|M|{ — Tr (MA"’)
L(T)
M = U'(L(T))U 24
L(T") := graph Laplacian matrix

subject to

where L(T") is constrained to be a graph Laplacian matrix with edge
set I' (i.e., graph connectivity). U is obtained by solving (22) and A
satisfies (23). I' parameter allows us to specify graph connectivity
information if it is known a priori. Otherwise, I' can be selected as
the set containing all possible edges.

3. PROPOSED SOLUTION

In order to find the best graph Laplacian matrix L™ that combines &
graph Laplacian matrices {Li}le, we propose the algorithm shown
in Fig.1 where we first solve the optimization problem stated in (22)
to find the best common graph transform U (see line 2). We then
estimate the common graph frequency (see lines 3-5), using the con-
dition stated in (23). Finally, the best graph Laplacian is found by
solving the optimization problem in (24) (see line 6). Note that, the
graph combining algorithm calls CGTA to find the best CGT.

In Fig.2, we present the CGT algorithm proposed to solve the
non-convex optimization problem in (22). In a nutshell, for a given
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initial guess Ujpi¢ and error tolerance e, CGTA iteratively minimizes
the objective in (22) by pairwise updating the columns of U (see
lines 6-10). The for loop at line 5 of CGTA iterates over all (h, j)
pairs for h, j = 2,...,d and h # j until the e-convergence has been
reached (see line 12). At each iteration, an optimal (2 X 2) rotation
matrix is used to update uy, and u; vectors in U (see lines 8—10). To
find the best rotation, another iterative procedure is used as depicted
in Fig.2 between lines 15-28. This algorithm guarantees conver-
gence to a local optimal solution, but the convergence analysis is
omitted due to space limitation.

4. RESULTS

In this section, we present our experimental results demonstrating
the performance of our graph combining algorithm (see Fig.1) by
benchmarking against averaging method. For given k graph Lapla-
cian matrices, L1, ..., L, the averaging method combines graphs as,

k
avg l .
L% = k;L (25)

We use two different metrics to measure the graph combining perfor-
mance. First metric is called coding gain which is a popular metric
used in information theory and compression [9]. This metric is used
to measure how well a designed common graph transform U diago-

nalizes L as follows,
p N 1/d
(L)
COUL) = (W) . 26)
Hi=2(UtL+U)ii

The other metric we use is called average quadratic cost [10] which
measures average variation of p signals ({ys}%7_;) with respect to a
graph Laplacian L as,

1
AQC({ys}te—, L) = » ZyﬁLys. 27
s=1

In our experiments, for each input graph L, ..., Ly we randomly
pick p = 100 samples from distribution in (1), and measure average
quadratic cost with respect to combined graphs, L™ and L*™%. On
the other hand, the coding gain is directly calculated for each input
graph Ly, ..., L, using graph transforms U™ and U*'# obtained from
L™ and L™®, respectively. Figs. 3 and 4 illustrate input graphs with
line and mesh structures and their combined graph results, L™ and
L*¢, respectively. Corresponding coding gain and quadratic cost
results are presented in Tables 1 — 4. According to these results,
proposed graph combining algorithm outperforms averaging method
by providing larger coding gain and lower average quadratic cost.

Table 1: Coding gain results for the line graphs in Fig.3

CG L1 Lo L3 Ly L5 Average
U* 0.8298 | 0.8586 | 0.9066 | 0.8319 | 0.8812 0.8616
U*e | 0.8216 | 0.8102 | 0.8160 | 0.8125 | 0.8061 0.8133

Table 2: Average quadratic cost results for the line graphs in Fig.3

AQC L4 Lo Ls Ly Ls Average
L* 14.334 | 14.102 | 13.094 | 15.8391 12.867 14.047
Lave 20.797 | 20.068 | 22.061 21.971 19.506 20.881
Table 3: Coding gain results for the graphs in Fig.4
CG L1 Lo Ls Ly Average
uU* 0.9802 | 0.9023 | 0.9562 | 0.8936 0.9331
Ue | 09050 | 0.8549 | 0.9521 | 0.8801 0.8981
Table 4: Average quadratic cost results for the graphs in Fig.4
AQC L4 Lo L3 Ly Average
L* 3.9576 | 4.6745 | 2.9700 | 5.1360 4.1845
Lave 5.8170 | 7.0549 | 4.2231 | 7.6249 6.1800

| P ——
L3 o et e
| D — ==
L =
0 - .
(a) Input graphs: L1, Lo, L3, La, Ls
Lae
L*
0 - |

(b) Combined graphs: L**® and L*
Fig. 3: Combining k = 5 line graphs with d = 16 nodes. Edge

weights are color coded between 0 and 1. Each input graph has only
one weak edge weight equal to 0.1 while all other edges are weighted

as 0.95.

AN N

L3 Ly

(a) Input graphs: L1, Lo, L3, Ly

N

0 B}
(b) Combined graphs: L*'® and L*

Fig. 4: Combining k = 4 mesh-like graphs with d = 5 nodes. Edge
weights are color coded between 0 and 1.

5. CONCLUSIONS

In this paper, we have introduced a novel framework for graph com-
bining by (i) introducing a new problem formulation with a maxi-
mum likelihood criterion and by (ii) proposing a solution involving
common graph transform estimation and common graph frequency
estimation. The experimental results have showed that the proposed
graph combining method leads to a better model compared to the av-
erage graph model in terms of two well known metrics, coding gain
and average quadratic cost.
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