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ABSTRACT

Finding densely connected subgraphs, also called communities, in

networks are of interest for many applications. In previous work,

we showed an optimization method for efficiently finding subgraphs

denser than the overall network [1]. This result is derived from our

studies of network processes, dynamical processes that model inter-

actions between individual agents in networks (i.e., spread of infec-

tion or cascading failures). In this paper, we prove that these sub-

graphs are also unique in the sense that there are no other subgraphs

in the network isomorphic to these subgraphs.

Index Terms— network science, scaled SIS process, commu-

nity detection, graph clustering, unique subgraph

1. INTRODUCTION

Network science studies networks, which describe relationships or

interactions between multiple agents or components in a system [2,

3]. It is of particular interest to find subsets of nodes (i.e., agents)

sharing some interesting properties. This is the problem of graph

clustering [4, 5, 6]. Often the clusters of interests are communities

where agents are highly connected. In this case, community detec-

tion is related to the problem of extracting dense subgraphs [7, 8].

For example, in epidemiology, densely connected communities are

more vulnerable to the spread of infection through contagion. Alter-

natively, dense subgraphs are of interest for distributed computation

in large, interconnected systems such as the power grid [9].

Previously in [1, 10], we studied a network process model called

the scaled SIS (susceptible-infected-susceptible) process. The scaled

SIS process models stochastic infection (i.e., failing) and healing

(i.e., recovery) of agents whose interactions are described by an

undirected, unweighted network, G(V,E). The advantage of the

scaled SIS process over other network process models is its equi-

librium distribution can be described in closed-form without resort-

ing to mean-field approximation [11] or assuming specific network

topologies [12, 13].

We showed through analysis that for a range of dynamical pa-

rameters, the configurations with the highest equilibrium probability

induce subgraphs that are denser than the overall network. These

dense subgraphs can be found efficiently using Max-Flow/Min-Cut

algorithm [14]. Solving for the most-probable configuration in a net-

work with 4941 node takes 0.1 sec. on a standard desktop. In this pa-

per, we show that these induced subgraphs are also provably unique.

There are no other subgraphs in the network that are isomorphic to

these induced subgraphs.

This work was partially supported by NSF grants CCF1011903 and
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Section 2 briefly reviews the scaled SIS process and the equilib-

rium distribution. Section 3 describes the Most-Probable Configura-

tion Problem, whose solutions correspond to subgraphs denser than

the overall graph. Section 4 proves that these subgraphs are also

unique. Section 5 concludes the paper.

2. SCALED SIS PROCESS

In [10], we developed and studied the scaled SIS (susceptible-

infected-susceptible) process, {X(t), t ≥ 0}, a binary-state,

continuous-time Markov process on a finite-size, static, simple,

unweighted, undirected, connected graph G(V,E). The topology

of the network captures the interactions amongst the N agents. The

state of the ith agent, xi, is either healthy (xi = 0) or infected

(xi = 1). The state of the entire network at some time t,

X(t) = x = [x1, x2, . . . , xN ]T ,

is the state of all the agents at time t. We call x the network config-

uration. Due to the interactions, the evolution of an agent state, xi,

is no longer independent of the state of other agents. The scaled SIS

process assumes that

1. X(t) transitions to the configuration where the jth agent (j =
1, . . . , N) is healed with transition rate:

q(x,Hj•x) = µ, x 6= Hj•x. (1)

2. X(t) transitions to the configuration where the ith agent (i =
1, 2, . . . , N) is infected with transition rate

q(x,Hix) = λγ
mi , (2)

where mi =
∑N

j=1 1(xj = 1)Aij is the number of infected

neighbors of node i. The symbol 1(·) is the indicator func-

tion, and A = [Aij ] is the adjacency matrix of G.

We call the parameter µ the healing rate. The parameter λ is the

exogenous (i.e., spontaneous) infection rate since when mi = 0, the

infection rate is λ. The parameter γ is the endogenous infection rate

since it is dependent on the number of infected neighbors; conse-

quently, we will also refer to γ as the topology-dependent parameter

and to λ and µ as topology-independent parameters. The scaled SIS

epidemics model does not have an absorbing state because of exoge-

nous infection and healing. The state space of the scaled SIS process

is X = {x} and the size of the state space is 2N .

In [10], we proved that the equilibrium distribution of the scaled

SIS process is
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π(x) =
1

Z

(
λ

µ

)1T x

γ
x
T

Ax

2 , x ∈ X (3)

where Z is the partition function and is defined as

Z =
∑

x∈X

(
λ

µ

)1T x

γ
x
T

Ax

2 . (4)

The term 1Tx is the number of infected agents in configuration

x and x
T
Ax

2
is the number of infected edges (i.e., edges whose end

nodes are infected).

2.1. Induced Subgraphs and Graph Density

Alternatively, as we showed in [1], we can consider each configura-

tion, x, from the perspective of induced subgraphs. The graph F is

an induced subgraph of the network configuration x if the nodes in

the subgraph F are the infected nodes in x and the edges of F are

edges where both end nodes are infected.

V (F (x)) = {vi ∈ V (G) | xi = 1}

E(F (x)) = {(i, j) ∈ E(G) | xi = 1, xj = 1}.
(5)

Definition The set of all possible induced subgraphs of G is F =
{F (x)}, ∀x ∈ X .

The set F includes the empty graph, ∅, which is induced by the

configuration x
0 = [0, 0, . . . , 0]T , and G, which is the subgraph

induced by the configuration x
N = [1, 1, . . . , 1]T . The cardinality

of |F| = |X |.

From [7] The density of a graph G is

d(G) =
|E(G)|

|V (G)|
.

There is an alternative definition for graph density that is the number

of edges divided by the total number of possible edges [15]. Unfor-

tunately, these two definitions of density are not equivalent.

We will refer to the density of the entire network, d(G) =
d(F (xN)), as the network density, and the density of an induced

subgraph of G as the subgraph density. The density of the empty

graph, d(F (x0)), is 0 by definition.

Alternatively, the equilibrium distribution of the scaled SIS pro-

cess can be written as a function of the induced subgraphs

π(F (x)) =
1

Z

((
λ

µ

)
γ
d(F (x))

)|V (F (x))|

, F ∈ F , (6)

where d(F (x)) is the density of the induced subgraph F and Z is

the partition function.

3. MOST-PROBABLE CONFIGURATION PROBLEM

The Most-Probable Configuration Problem solves for the configu-

ration with the highest equilibrium probability. The most-probable

configuration, x∗, is the network configuration that we would most

likely observe at equilibrium:

x
∗ = argmax

x∈X
π(x) = argmax

x∈X

(
λ

µ

)1T x

γ
x
T

Ax

2 . (7)

The equilibrium distribution of the scaled SIS process (3) is a

Gibbs distribution. In the context of Markov random field literatures,

the Most-Probable Configuration Problem is the MAP (Maximum A

Posteriori) problem [16]. The most-probable configuration is called

the ground state problem in statistical mechanics. It is the state of

minimum energy [17].

3.1. Regime II) Endogenous Infection Dominant

The solution of (7) depends on the adjacency matrix of the un-

derlying network, A, and the dynamics of the process through
λ
µ

and γ. The most-probable configuration is particularly in-

teresting in Regime II) Exogenous Infection Dominant, where
λ
µ

> 1, 0 < γ ≤ 1. In this regime, the topology-dependent

process (controlled by γ) opposes the effect of the topology-

independent process (controlled by λ, µ). We showed in [1, 10]

that many of the most-probable configurations are non-degenerate

(i.e., x 6= {x0,xN}); in these non-degenerate most-probable con-

figuration, subsets of agents are infected while others are healthy.

Corollary 5.8 in [1] proved that in Regime II) Endogenous In-

fection Dominant: 0 < λ
µ

≤ 1, γ > 1, the subgraphs induced by

the non-degenerate most-probable configurations have density larger

than the overall graph

d(F (x∗)) > d(G).

We also proved in [1] that in Regime II), the solution of the Most-

Probable Configuration Problem corresponds to the minimum of a

submodular function. We can use Max-Flow/Min-Cut algorithm to

efficiently solve this combinatorial optimization problem [14].

Figure 1a shows the most-probable configuration when

λ

µ
= 0.06, γ = 3.53

for the US Western Power Grid, a 4941-node network presentation

of the western power grid [18]. The network can be obtained from

[19]. The most-probable configuration is found in 0.026 sec. on

a desktop with 3.7 GHz Quad Core Xeon processor and 16GB of

RAM. Figure 1b shows the corresponding induced subgraph. The

density of the induced subgraph is d(F (x∗)) = 3. The density of

the overall network is d(G) = 1.335.

4. UNIQUENESS OF THE MOST-PROBABLE

CONFIGURATION

The graph F (x∗) is the subgraph induced by the solution of the

Most-Probable Configuration Problem. In this section, we will prove

that F (x∗) is subgraph unique in G in that there are no other sub-

graphs in G isomorphic to F (x∗). This does not guarantee that the

solution of (7), a combinatorial optimization problem, is unique [20].

Definition [21] Two graphs, G and F , are equivalent if they are

isomorphic: there is a bijection between the vertex sets of G and F ,

f : V (G) → V (F ), such that any two vertices u and v of G are

adjacent in G if and only if f(u) and f(v) are adjacent in F . This

means that edge (u, v) is in G if and only if edge (f(u), f(v)) is in

F .

Lemma 4.1. [Proof in Appendix A] Given an undirected graph G

described by adjacency matrix A and two different configurations

x1 and x2, which induce subgraphs F (x1) and F (x2), respectively.

F (x1) is isomorphic to F (x2) if and only if 1Tx1 = 1Tx2 and

x
T
1 Ax1 = x

T
2 Ax2.
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(a) x∗, Blue = Infected, Red = Healthy (b) F (x∗)

Fig. 1: Most-Probable Configuration, x∗, for
(

λ
µ
= 0.06, γ = 3.53

)
. Computation time = 0.026 sec.

Theorem 4.1. [Proof in Appendix B] Consider Regime II) Endoge-

nous Infection Dominant: 0 < λ
µ
≤ 1, γ > 1 and network G. The

most-probable configuration, x∗, induces the subgraph F (x∗) with

density d(F (x∗)). If

λ

µ
γ
d(F (x∗))

> 1,

then x
∗ is subgraph unique.

Theorem 4.2. If x∗ is the most-probable configuration in Regime

II) Endogenous Infection Dominant: 0 < λ
µ
≤ 1, γ > 1, then it is

subgraph unique.

Proof. Theorem 4.1 states the condition for which a configuration,

x
∗, is subgraph unique. Theorem 5.6 in [1] states the following nec-

essary and sufficient conditions: The most-probable configuration

x
∗ 6= x

0 if and only if there exists at least one induced subgraph

F ∈ F with density d(F ) for which λ
µ
γd(F ) > 1.

Since the induced subgraph of x
∗ satisfies the condition that

λ
µ
γd(F (x∗)) > 1, then x

∗ 6= x
0. However, since x

0 induces the

empty graph, a solution where x∗ = x
0 is also subgraph unique. As

a result, any solution to the Most-Probable Configuration Problem in

Regime II) is subgraph unique.

5. CONCLUSION

Theorem 4.2 states that all the possible solutions of the Most-

Probable Configuration Problem in Regime II) are subgraph unique.

This means that the corresponding induced subgraphs, F (x∗), are

unique. This result is particularly interesting in the case when x
∗

is a non-degenerate configuration since it would be computationally

infeasible to iterate through all the possible subgraphs in a network

to find unique subgraphs. By studying network processes, we can

gain insights into both the behavior of the dynamical process as well

as properties of the underlying graph structure.
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A. PROOF FOR LEMMA 4.1

Lemma. Given an undirected graph G described by adjacency ma-

trix A and two different configurations x1 and x2, which induce

subgraphs F (x1) and F (x2), respectively. F (x1) is isomorphic to

F (x2) if and only if 1Tx1 = 1Tx2 and x
T
1 Ax1 = x

T
2 Ax2.

Proof. Recall that 1Tx1 and 1Tx2 are the number of infected nodes

in the two configurations. Therefore, they are the number of nodes

in each induced subgraph, F (x1) and F (x2). By the definition of

the induced subgraphs, xT
1 Ax1 and x

T
2 Ax2 are equal to twice the

number of edges in each induced subgraph.

Necessity

If F (x1) is isomorphic to F (x2), then 1Tx1 = 1Tx2 and

x
T
1 Ax1 = x

T
2 Ax2.

This follows from the definition of isomorphism.

Sufficiency

If 1Tx1 = 1Tx2 and x
T
1 Ax1 = x

T
2 x2, then F (x1) is iso-

morphic to F (x2).

We prove this by contrapositive. We need to prove that if

F (x1) is not isomorphic to F (x2), then 1Tx1 6= 1Tx2 or

x
T
1 Ax1 6= x

T
2 Ax2.

There are two ways F (x1) is not isomorphic to F (x2): 1)

There is no bijective function f or 2) There is a bijective

function f but two vertices adjacent in F (x1) are not adja-

cent in F (x2). The bijection function f does not exist if the

induced subgraphs, F (x1) and F (x2), have different num-

ber of nodes; this mean that 1Tx1 6= 1Tx2. 2) There is

a bijection function, f , but nodes u and v are adjacent in
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F (x1) but are not adjacent in F (x2). This would mean that

x
T
1 Ax1 6= x

T
2 Ax2. This is impossible by the definition of

induced subgraph.

B. PROOF FOR THEOREM 4.1

Theorem. Consider Regime II) Endogenous Infection Dominant:

0 < λ
µ

≤ 1, γ > 1 and network G. The most-probable configura-

tion, x∗, induces the subgraph F (x∗) with density d(F (x∗)). If

λ

µ
γ
d(F (x∗))

> 1,

then x
∗ is subgraph unique.

Proof. Due to space constraint, we present a summarized version of

the proof. The detailed proof is found in [20].

We will prove by contradiction. We can show that when the so-

lutions to the Most-Probable Configuration Problem are two equally

probable configurations, x∗
1 and x

∗
2, whose induced subgraphs, F1 =

F (x∗
1) and F2 = F (x∗

2), are isomorphic, we can always create an-

other subgraph by combining F1 and F2 such that the configuration

that induces this third subgraph will have a higher probability than

x
∗
1 and x

∗
2. Let F1 ∩F2 denote V (F1)∩V (F2) and F1 ∪F2 denote

V (F1) ∪ V (F2).
Suppose that the solutions to the Most-Probable Configuration

Problem are two equally probable configurations, x∗
1 and x

∗
2, whose

induced subgraphs, F1 = F (x∗
1) and F2 = F (x∗

2), are isomor-

phic. From Lemma 4.1, this means that |V (F1)| = |V (F2)| = N1,

|E(F1)| = |E(F2)| = E1, d(F1) = d(F2). Additionally, we know

that λ
µ
γd(F1) = λ

µ
γd(F2) > 1.

We now consider two cases: 1) F1∩F2 = ∅ and 2) F1∩F2 6= ∅.

F1 ∩ F2 = ∅
The induced subgraphs F1 and F2 are disconnected.

Define a new subgraph

F̃ = F1 ∪ F2.

We know that |V (F̃ )| = 2N1 and |E(F̃ )| = 2E1, while

d(F̃ ) = d(F1) = d(F2). The subgraph F̃ has the same

density as F1, which means

λ

µ
γ
d(F̃ ) =

λ

µ
γ
d(F1) > 1.

Additionally Ñ > N1. As we are in Regime II), by (6), the

configuration that induces F̃ has a larger equilibrium prob-

ability than x
∗
1,x

∗
2, thereby contradicting the premise that

x
∗
1,x

∗
2 are the most-probable configurations.

F1 ∩ F2 6= ∅
The induced subgraphs F1 and F2 are not disconnected.

Define a new subgraph

F̂ = F1 ∩ F2. (8)

We know then that |V (F̂ )| = N̂ < N1, |E(F̂ )| = Ê < E1,

with density d(F̂ ) = Ê

N̂
. We have 3 cases to consider: 1)

d(F̂ ) = d(F1), 2) d(F̂ ) < d(F1), 3) d(F̂ ) > d(F1).

In case 1) d(F̂ ) = d(F1), we can show that the new subgraph

F̃ = F1 ∪ F2

has the same density as F1. With Ñ > N1, the configura-

tion that induces F̃ is more probable than x
∗
1, leading to a

contradiction.

In case 2) d(F̂ ) < d(F1), we can show that the new subgraph

F̃ = F1 ∪ F2

is denser than F1. With Ñ > N1, the configuration that in-

duces F̃ is more probable than x
∗
1, leading to a contradiction.

In case 3) d(F̂ ) > d(F1), we need to consider both

F̃ = F1 ∪ F2

and

F̂ = F1 ∩ F2.

We can show that the equilibrium probability of x∗
1,x

∗
2 can

not simultaneously be larger than the equilibrium probability

of the configuration, x̂, which induces the subgraph F̂ and

the equilibrium probability of the configuration, x̃, which in-

duces the subgraph F̃ . This contradicts the premise that x∗
1

and x
∗
2 are the two most-probable configurations.

C. REFERENCES

[1] J. Zhang and J. M. F. Moura, “Role of subgraphs in epidemics

over finite-size networks under the scaled SIS process,” Jour-

nal of Complex Networks, 2015.

[2] M. O. Jackson, Social and Economic Networks. Princeton

University Press, 2008.

[3] M. Newman, Networks: an Introduction. Oxford University

Press, 2010.

[4] S. E. Schaeffer, “Graph clustering,” Computer Science Review,

vol. 1, no. 1, pp. 27–64, 2007.

[5] S. Fortunato, “Community detection in graphs,” Physics Re-

ports, vol. 486, no. 3, pp. 75–174, 2010.

[6] J. Leskovec, K. J. Lang, and M. Mahoney, “Empirical compar-

ison of algorithms for network community detection,” in Pro-

ceedings of the 19th international conference on World wide

web. ACM, 2010, pp. 631–640.

[7] S. Khuller and B. Saha, “On finding dense subgraphs,” in Au-

tomata, Languages and Programming. Springer, 2009, pp.

597–608.

[8] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal, “A survey of

algorithms for dense subgraph discovery,” in Managing and

Mining Graph Data. Springer, 2010, pp. 303–336.

[9] J. Mohammadi, J. Zhang, S. Kar, G. Hug, and J. M. F. Moura,

“Multilevel distributed approach for DC optimal power flow,”

in Proceedings of IEEE Global Conference on Signal and In-

formation Processing (GlobalSIP). IEEE, to be published

2015.

[10] J. Zhang and J. M. F. Moura, “Diffusion in social networks

as SIS epidemics: Beyond full mixing and complete graphs,”

IEEE Journal of Selected Topics in Signal Processing, vol. 8,

no. 4, pp. 537–551, Aug 2014.

4112



[11] A. Barrat, M. Barthelemy, and A. Vespignani, Dynamical Pro-

cesses on Complex Networks. Cambridge University Press,

2008, vol. 1.

[12] P. Van Mieghem and E. Cator, “Epidemics in networks

with nodal self-infection and the epidemic threshold,” Phys.

Rev. E, vol. 86, p. 016116, Jul 2012. [Online]. Available:

http://link.aps.org/doi/10.1103/PhysRevE.86.016116

[13] R. Durrett, “Some features of the spread of epi-

demics and information on a random graph,” Pro-

ceedings of the National Academy of Sciences, vol.

107, no. 10, pp. 4491–4498, 2010. [Online]. Available:

http://www.pnas.org/content/107/10/4491.abstract

[14] V. Kolmogorov and R. Zabin, “What energy functions can be

minimized via graph cuts?” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 26, no. 2, pp. 147–159,

2004.

[15] S. Wasserman, Social Network Analysis: Methods and Appli-

cations. Cambridge University Press, 1994, vol. 8.

[16] D. Koller and N. Friedman, Probabilistic Graphical Models:

Principles and Techniques. MIT press, 2009.

[17] A. K. Hartmann and M. Weigt, Phase Transitions in Combina-

torial Optimization Problems: Basics, Algorithms and Statisti-

cal Mechanics. John Wiley & Sons, 2006.

[18] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-

world networks,” Nature, vol. 393, no. 6684, pp. 440–442,

1998.

[19] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large

network dataset collection,” http://snap.stanford.edu/data, Jun.

2014.

[20] J. Zhang, “Network process: How topology impacts the dy-

namics of epidemics and cascading failures,” Ph.D. disserta-

tion, Carnegie Mellon University, 2015.

[21] D. B. West et al., Introduction to Graph Theory. Prentice hall

Upper Saddle River, 2001, vol. 2.

4113


