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ABSTRACT
Controlling the behavior of a signal defined over a graph by
acting on a limited set of nodes is a problem that finds appli-
cation in many fields. In this paper, we merge recently de-
veloped tools in graph signal processing with control theory
of complex networks and consider the reconstruction of ban-
dlimited graph signals from their samples through a diffusion
process properly driven by a subset of control nodes. Then,
we propose an optimization algorithm aimed at minimizing
the control energy incorporating a regularization term whose
goal is to promote sparsity across time and nodes jointly.

Index Terms— Graph signals, controllability, complex
networks, sparse control.

1. INTRODUCTION

In many fields of current interest, the observed data can be
represented as signals over a graph [1]. The signal is a vec-
tor whose entries are associated to the vertices of the graph,
whereas the edges represent relations between nodes that in-
teract directly with each other. Relevant examples are biolog-
ical networks, smart grids or social networks. Motivated by
the ubiquity and widespread applicability of the graph signal
model, in recent years the signal processing research com-
munity has dedicated many efforts to devise specific tools
for analyzing signals defined over a graph, or graph signal
for short. In this paper we address the controllability of a
graph signal, meaning the capability of driving a graph signal
to assume a desired behavior, by acting on a limited num-
ber of nodes. This problem was recently addressed in [2].
This is indeed one of the basic problems in control theory,
namely how to drive a dynamical system towards a desired
state. More recently, the interest in controlling dynamical sys-
tem has received a further push towards the control of com-
plex networks. In spite of the efforts and progress, the control
of a complex dynamical, typically nonlinear, network still re-
mains an unsolved problem, because of the complicated in-
terplay between network topologies and nonlinear dynamics.
Even restricting the problem to linear systems, the problem of
identifying the minimum set of nodes to be controlled in or-
der to drive the whole network to a desired state is still open,
especially for large size networks. Historically, the Kalman
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and later the equivalent Popov-Belevitch-Hautus (PBH) rank
conditions have long been the basic tools to check controlla-
bility of a linear time-invariant system [3], [4]. A relatively
recent ground-breaking contribution was given in [5], where
the identification of the minimal set of nodes enabling full net-
work control of complex networks based on graph-theoretic
tools derived from structural control theory [6]. A very con-
ceptually simple method to identify the minimum set of con-
trol nodes was recently expressed in terms of the geometric
multiplicities of the eigenvalues of the state matrix in [7].
However, the practical implementation of this method over
large size networks is critical because of numerical instabili-
ties related to the identification of eigenvalues’ multiplicities.
Furthermore, in a practical setting, the search for the set of
control nodes should be considered together with the energy
to be spent to implement the control over a give time hori-
zon. This issue was recently tackled in [8], where the authors
specifically studied the trade-off between the number of con-
trol nodes and the energy to be spent to enforce the control. In
this paper, we address this same problem and propose a few
alternative algorithms aimed at striking an optimal trade-off
between control energy and cardinality of the set of control
nodes. More specifically, we formulate the minimum energy
control problem by introducing alternative sparse regulariza-
tion terms aimed at penalizing the use of large sets of control
nodes.

2. MINIMUM ENERGY CONTROLLABILITY

Let us consider a network represented by a graph G , (V, E)
where V , (1, . . . , N) is the sets of N nodes and E ⊆ V ×V
is the set of edges. Let W = (wij)

N
i,j=1 denote the adja-

cency matrix associated with the graph G with entrieswij = 1
if there is a link from node j to i and wij = 0 otherwise.
The input degree of node i is defined as di ,

∑N
j=1 wij and

D , diag(d1, . . . , dN ) is the associated diagonal degree ma-
trix. The graph Laplacian matrix L is then L , D −W .
We associate to the network a state vector at time t defined as
a mapping from the vertex set to real vectors of size N , i.e.
x(t) : V → RN . The evolution of the network state over time
is described by the continuous, time-invariant, linear system

ẋ(t) = −Lx(t) (1)

initialized with x(0) = x0 where x0 is the vector at time
t = 0. The equivalent discrete time evolution of (1) can be
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expressed as
xk+1 = (I − εL)xk := Axk (2)

where we have introduced the so called state (or transition)
matrixA = I − εL. To guarantee the stability of the system,
we assume 0 < ε ≤ 1/dmax with dmax = maxi di. Steering
the state vector from an initial state x0 to a desired final state
xf in a finite time horizon (finite number of steps) amounts
to finding a set of M input vectors uk acting on a subset S of
nodes through the following dynamical system

xk+1 = Axk +Buk (3)

where
B , [ek1 , . . . , ekM ] (4)

is theN×M control input matrix with eki theN -dimensional
canonical vector. Let us denote with S the set of M ≤ N
control nodes, i.e. S , {s1, . . . , sM} ⊆ V . The dynamic of
a network controlled at each time k with M external control
inputs can be formulated as in (3) where uk : S → RM is the
control signal imposed on the set S of controlled nodes. The
dynamic system in (3) is controllable in K ∈ N steps by the
set of nodes S if and only if, for any desired final state xf ,
there exists an input u driving the network to x(K) = xf
from the initial state x0 = 0. This is possible if and only if
the N ×KM controllability matrix

C = [B,AB, . . . ,AK−1B] (5)

has full row rank, that is rank(C) = N . This represents the
so called Kalman’s controllability rank condition [4]. Equiva-
lently, defining the K-steps controllability Gramian symmet-
ric matrix as

G ,
K−1∑
m=0

AmBBT (AT )m = CCT (6)

the network is controllable in K steps by the nodes S if and
only if G is positive definite. From a practical point of view,
besides checking the rank condition, it is important to evalu-
ate how much energy is necessary to drive the graph signal to
the desired behavior within a finite time. To this end, let us
define the energy to control the network in K steps as

EK =‖ u ‖2=
K−1∑
k=0

‖ uk ‖2 (7)

whereu is theM ·K-dimensional vector obtained by stacking
theM×1 vectors uk, k = 0, . . . ,K−1. The optimal control
signals uk minimizing the energy EK necessary to drive the
overall graph signal from x0 to xf is [4], [9]:

u?k = BT (AT )K−k−1G−1(xf−AKx0), k = 0, . . . ,K−1
(8)

and the corresponding minimum energy is

EK =‖ u ‖2= (xf −AKx0)
TG−1(xf −AKx0). (9)

3. RECONSTRUCTION OF BANDLIMITED GRAPH
SIGNALS FROM SPARSE SAMPLES THROUGH

DIFFUSION PROCESS

In many cases of interest, graph signals exhibit a clustered
behavior meaning that the signal is relatively smooth within
each cluster whereas it can assume different values across
different clusters. This class of signals typically admits a
parsimonious representation based on the recently introduced
Graph Fourier Transform (GFT) [1], [10]. Alternative defini-
tion exists, based either on the adjacency or on the Laplacian
matrix. In the latter case, if the graph is undirected, the Lapla-
cian matrix is symmetric and positive semi-definite. Hence, it
may be diagonalized as

L = VΛVT =

N∑
i=1

λiviv
T
i , (10)

where Λ is a diagonal matrix with non-negative real eigen-
values {λi} on its diagonal, {vi} is the set of real-valued or-
thonormal eigenvectors. From spectral graph theory, see e.g.,
[11], the Laplacian eigenvectors are well known to possess
useful clustering properties. The GFT of a vector x is then
defined as the projection of x onto the space spanned by the
Laplacian eigenvectors, see e.g. [1]:

x̂ = VTx (11)

with inverse Fourier transform x = V x̂. Given a subset of
vertices S ⊆ V , we define a vertex-limiting operator as a
diagonal matrix DS such that DS = Diag{1S} where 1S
is the set indicator vector, whose i-th entry is equal to one,
if i ∈ S, or zero otherwise. Similarly, the vertex-limiting
operator over the complement set S, such that V = S ∪S and
S ∩ S = ∅, is D = I − DS . By duality, given a subset of
frequency indices F , we introduce the band-limiting operator

BF = VΣFVT , (12)

where ΣF is a diagonal matrix defined as ΣF = Diag{1F}.
It is immediate to check that both matrices DS and BF rep-
resent orthogonal projectors. A signal x is perfectly band-
limited over a frequency set F if BFx = x. Sampling a
graph signal x over a set S of vertices gives rise to a vector
xs := DSx. The basic question with sampling is how to re-
construct the overall signal from its samples. It was shown
in [12] that it is possible to recover the overall vector x from
its sampled counterpart xs if and only if the matrix DBF has
spectral norm strictly less than one. If such condition holds,
the reconstruction formula is [12]:

x =
(
I −DBF

)−1
xs. (13)

Within this framework, it is now of interest to check whether
it is possible to enforce a bandlimited behavior x over the en-
tire graph through a diffusion process properly driven through
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a set of control nodes. This problem can be cast as in (3),
where x0 = xs and xf = x. The optimal driving input is
then as in (8). The controllability condition, or equivalently
the invertibility of the Gramian matrix G, requires now that
there is no eigenvector of the graph Laplacian that is orthogo-
nal to all columns of matrixB in (3). This means that, choos-
ing B as in (4), there is no eigenvector vi such that its sam-
ples corresponding to the position of the driving nodes (iden-
tified by the columns of B) are all null. As a particular case,
this implies that, if the graph is disconnected, there should
be at least one driving node for every disconnected compo-
nent, as expected. But also in case of a connected graph,
these arguments suggest that the position of the driving nodes
should avoid locations where all eigenvectors of the Lapla-
cian assume very low values, to avoid ill-conditioning of the
Gramian and, consequently, high control energies.

A numerical example, for a random geometric graph, is
reported in Fig. 1, showing the energy spent for reconstruct-
ing a bandlimited signal whose spectrum is confined to the
first 4 eigenvectors of the Laplacian (|F| = 4) vs. the num-
ber of control nodes. For each number of control nodes, we
picked up the optimal set as the one that minimizes the re-
construction energy. We can see that the signal can indeed be
reconstructed through a diffusion process but that the smaller
is the number of control nodes, the higher is the energy nec-
essary for perfect reconstruction.
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Fig. 1. Minimum control energy vs. number of control nodes.

4. OPTIMAL MINIMUM-ENERGY SPARSE
CONTROL

The trade-offs between control energy and number of control
nodes has been investigated in several papers [8], [5]. In par-
ticular in [8] it has been shown that some (theoretically) con-
trollable networks are practically uncontrollable as the control
energy grows exponentially with the ratio between the net-
work size and the number of control nodes. Then identifying
the optimal set of driver nodes to minimize energy consump-
tion represents a fundamental topic. Sparse feedback control
has been considered in several papers, see e.g. [13], [14]. In
the following, we focus on the open loop (i.e., with no feed-

back) sparse control problem and our goal is to design the
control inputs in order to strike the optimal balance between
control energy and number of control nodes by acting, jointly,
over time and network nodes, within a finite time horizon. We
formulate our minimum energy control incorporating a spar-
sity constraint as

min
u∈RM·K

x∈RN·(K+1)

J0(u) := u
Tu+ β‖u‖0, (P0)

s.t.
xk+1 = Axk +Buk, k = 0, . . . ,K − 1
x0 = 0,
xK = xf

,X

(14)
defining x .

= (xk)
K
k=0. Note that in our model, sparsity of the

input at each time step means that for each time k only a few
columns of the matrix (basis) B are excited. To efficiently
solve the non-convex L0 norm problem in (14) we relax it by
seeking the solution of a L1 norm regularization term, i.e.

min
u∈RM·K ,x∈RN·(K+1)

J1(u) := u
Tu+ β‖u‖1, (P1)

s.t. (x,u) ∈ X .
(15)

The latter formulation is amenable to an iterative solution
strategy by using the alternating direction method of multi-
pliers (ADMM), see [13],[14],[15] so that an iterative and ef-
ficient algorithm can be designed to solve it as discussed in
details in the following section.

4.1. ADMM algorithm
By introducing the auxiliary variable v ∈ RM ·K we can write
problem P1 in the equivalent form

min
u,v∈RM·K

x∈RN·(K+1)

uTu+ β‖v‖1 +
ρ

2
‖u− v‖22

s.t. a) xk+1 = Axk +Buk, k = 0, . . . ,K − 1
b) uk = vk, k = 0, . . . ,K − 1
c) x0 = 0,
d) xK = xf

(16)
where the introduction of the constraints uk = vk leads to
decouple the objective function with respect to uk and vk by
ensuring, through the quadratic penalty, the strongly convex-
ity of the problem for ρ > 0. The augmented Lagrangian
associated with (16) is given by

Lρ(x,u,v,λ, z) = H0(x0,u0,v0,λ1, z0)− λTKxK

+

K−1∑
k=1

(Hk(xk,uk,vk,λk+1, zk)− λTk xk)

where λ , (λk)
K
k=1 and z , (zk)

K−1
k=0 are the Lagrangian

multipliers associated respectively with the constraints a) and
b) and the Hamiltonian function Hk is defined as

Hk(xk,uk,vk,λk+1, zk) = u
T
k uk +β‖vk‖1+

ρ

2
‖uk − vk‖22

+ λTk+1(Axk +Buk) + z
T
k (uk − vk).
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According to the Lagrange-multiplier theory necessary con-
ditions for a constrained minimum can be found by deriving
Lρ with respect to (x,u,v,λ, z). Hence we get

∂Lρ
∂xk

= λTk+1A− λTk = 0, k = 1, . . . ,K − 1

∂Lρ
∂λk+1

= Axk +Buk − xk+1 = 0, k = 0, . . . ,K − 1

which leads to

λk = (AT )K−kλK , k = 1, . . . ,K − 1
xk+1 = Axk +Buk, k = 0, . . . ,K − 1.

(17)

The ADMM algorithm is based on the iterative solution of a
sequence of convex problems so that we will determine u, v
and z through the following steps:

un+1 = argminu Lρ(xn,u,vn,λn, zn)
vn+1 = argminv Lρ(xn,un+1,v,λn, zn)
zn+1 = zn + ρ(un+1 − vn+1)

(18)

i.e. the optimal uk and vk are found in an alternating fash-
ion and the dual update step adopts a step-size equal to ρ by
ensuring the dual feasibility of (un,vn, zn) at each iteration.
After some simple manipulations we yield from (18) for each
k

un+1
k = (2 + ρ)−1(ρvnk − znk −BTλnk+1)
vn+1
k = tβ/ρ(u

n+1
k + znk/ρ)

zn+1
k = znk + ρ(un+1

k − vn+1
k )

(19)

where tβ/ρ(y) is an element-wise non-linear operator defined
as

tβ/ρ(yk) =

 yk − β/ρ if yk ≥ β/ρ
yk + β/ρ if yk ≤ −β/ρ
0 if − β/ρ < yk < β/ρ.

(20)

To find a closed-form expression for λnk+1 we can replace in
(17) the un+1

k expression in (19) by obtaining

λnK = −(2 + ρ)G−1

[
xf −

K−1∑
k=0

AK−1−kB

2 + ρ
(ρvnk − znk )

]
λnk = (AT )K−kλnK , ∀k.

The final ADMM iterative algorithm is described in Algo-
rithm I. As a numerical example, in Fig. 2, we report the
activation pattern of a graph across time (active nodes are in
red, inactive nodes in blue). Rather interestingly, we can see
that, initially, for most of the time only a few nodes are ac-
tive. Only as time approach the horizon, the number of active
nodes increases to meet the requirement on reaching the de-
sired overall pattern within a finite time. Finally, in Fig. 3 we
show the minimum energy consumption versus the percent-
age of control nodes obtained by varying the sparsity coeffi-
cient β for different time horizon K. It can be noted that, as

Algorithm 1 : ADMM iterative algorithm
Set x0 = 0, xK = xf , 0 < ε� 1, n = 0, initialize

zn, vn, un randomly;
Repeat

(a): λnK =−G−1[(2 + ρ)xf −
K−1∑
k=0

AK−1−kB(ρvnk − znk )]

(b): λnk = (AT )K−kλnK , ∀k

(c): un+1
k = (2 + ρ)−1(ρvnk − znk −BTλnk+1), ∀k

(d): vn+1
k = tβ/ρ(u

n+1
k + znk/ρ), ∀k

(e): zn+1
k = znk + ρ(un+1

k − vn+1
k ), ∀k

(f): n = n+ 1

until ‖ un − un−1 ‖2 + ‖ vn − vn−1 ‖2≤ ε.
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Fig. 2. Activation pattern across time.
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Fig. 3. Minimum energy vs. the percentage of control nodes,
for different time horizons.

K increases, a given control energy can be achieved with a
lower number of control nodes.

In conclusion, in this paper, we have proposed algorithms
aimed to strike the best trade-off between the control energy
and the number of control nodes by promoting sparsity across
time and nodes jointly. As a particular case, we considered the
reconstruction of band-limited graph signals through a diffu-
sion process properly driven by a subset of control nodes.
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