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ABSTRACT
Network processes are often represented as signals defined on the
vertices of a graph. To untangle the latent structure of such signals,
one can view them as outputs of linear graph filters modeling under-
lying network dynamics. This paper deals with the problem of joint
identification of a graph filter and its input signal, thus broadening
the scope of classical blind deconvolution of temporal and spatial
signals to the less-structured graph domain. Given a graph signal y
modeled as the output of a graph filter, the goal is to recover the vec-
tor of filter coefficients h, and the input signal x which is assumed
to be sparse. While y is a bilinear function of x and h, the filtered
graph signal is also a linear combination of the entries of the “lifted”
rank-one, row-sparse matrix xhT . The blind graph filter identifica-
tion problem can be thus tackled via rank and sparsity minimization
subject to linear constraints, an approach amenable to convex relax-
ation. An algorithm for jointly processing multiple output signals
corresponding to different sparse inputs is also developed. Numeri-
cal tests with synthetic and real-world networks illustrate the merits
of the proposed algorithm, as well as the benefits of leveraging mul-
tiple signals to aid the blind identification task.

Index Terms— Graph signal processing, blind system identifi-
cation, graph filter, graph process, multiple sparse signals.

1. INTRODUCTION

Coping with the challenges posed by fields such as network sci-
ence and big data necessitates broadening the scope beyond classical
time-varying signal analysis and processing, to also accommodate
signals defined on graphs [1–3]. Under the assumption that the sig-
nal properties are related to the topology of the graph where they
are supported, the goal of graph signal processing is to develop al-
gorithms that fruitfully leverage this relational structure. A suitable
way to achieve this is to rely on the so-called graph-shift operator,
which is a matrix that reflects the local connectivity of the graph [2].

We consider here that each node has a certain value, and these
values are collected across nodes to form a graph signal. With this
definition, graph filters – which are a generalization of classical time-
invariant systems – are a specific class of operators whose input and
output are graph signals (cf. Section 2). Mathematically, graph fil-
ters are linear transformations that can be expressed as polynomials
of the graph-shift operator [4]. The polynomial coefficients deter-
mine completely the transformation and are referred to as filter co-
efficients. Such linear transformations can be implemented via local
interactions among nodes, and may be used to model e.g., diffusion
or percolation dynamics in the network [5, 6].
Contributions. This paper investigates the problem of blind identi-
fication of graph filters. Specifically, we are given a graph signal y
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which is assumed to be modeled as the output of a graph filter, and
seek to jointly identify the filter coefficients h and the input signal x
that gave rise to y. Such a challenging problem broadens to graphs
the scope of classical blind system identification or blind deconvo-
lution of signals in the time or spatial domains [7]. Since the inverse
problem is ill-posed, we assume that the length of h is small and that
x is sparse. This is the case when, e.g., a few seeding nodes inject a
signal that is diffused throughout a network [8,9]. While y is a bilin-
ear function of x and h, in Section 3 we show the filtered graph sig-
nal is also a linear combination of the entries of the “lifted” rank-one,
row-sparse matrix xhT [7, 10]. The blind graph filter identification
problem can be thus tackled via joint rank and sparsity minimiza-
tion subject to linear constraints, an approach amenable to convex
relaxation [11, 12]. An algorithm is developed in Section 4 to per-
form blind identification when multiple outputs are available; see
also [13] for identifiability claims in a setting unrelated to graphs.
Simulations in Section 5 showcase the effectiveness of the proposed
algorithm on synthetic and real-world graphs, and the benefits of
leveraging multiple signals to aid the blind identification task.
Relation to prior work. Our ideas were inspired by the pioneer-
ing work in [7], where matrix lifting is used for blind deconvolu-
tion of temporal and spatial signals. In the current paper, the lin-
ear operator mapping xhT to the output signal y depends on the
spectral properties of the graph-shift operator [14], a departure from
the random (Gaussian or partial Fourier) operators arising with the
biconvex compressed sensing approach of [10]. Unlike our previ-
ous work in [14], we consider that the support of the input signal
x is unknown – a pragmatic setting useful to trace those influen-
tial nodes that led to the observed network state. Accordingly, en-
visioned applications domains include opinion formation in social
networks (who started the rumor?), inverse problems of biological
signals supported on graphs (which brain regions were activated?),
and modeling and estimation of diffusion processes (who is “patient
zero” for the disease outbreak?) [3]. Furthermore, the setup where
multiple output signals are observed (each one corresponding to a
different sparse input), has not been explored in recent convex relax-
ation approaches to blind deconvolution [7].

2. GRAPH SIGNALS AND GRAPH FILTERS

Graph signals. Let G denote a directed graph with a set of nodes
N (with cardinality N ) and a set of links E , such that if node i is
connected to j, then (i, j) ∈ E . Since G is directed, the set Ni :
{j |(j, i) ∈ E} stands for the (incoming) neighborhood of i. For
any given G we define the adjacency matrix A ∈ RN×N as a sparse
matrix with non-zero elements Aji if and only if (i, j) ∈ E . The
value of Aji captures the strength of the connection from i to j. The
focus of the paper is on analyzing (graph) signals defined on N .
These signals can be represented as vectors x = [x1, ..., xN ]T ∈
RN , where xi represents the value of the signal at node i.
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Graph shift operator. The graph G can be endowed with the so-
called graph-shift operator S [2,4]. The shift S ∈ RN×N is a matrix
whose entry Sji can be non-zero only if i = j or if (i, j) ∈ E . The
sparsity pattern of the matrix S captures the local structure of G, but
we make no specific assumptions on the values of its non-zero entries
The intuition behind S is to represent a linear transformation that can
be computed locally at the nodes of the graph. More rigorously, if
y is defined as y = Sx, then node i can compute yi provided that
it has access to the value of xj at j ∈ Ni. Typical choices for S
are the adjacency matrix A [2, 4], and the graph Laplacian [1]. We
assume henceforth that S is diagonalizable, so that S = VΛV−1

with Λ ∈ RN×N being diagonal.
Graph filters. The shift S can be used to define linear graph-signal
operators of the form

H :=
∑L−1

l=0 hlS
l (1)

which are called graph filters [2]. For a given input x, the output
of the filter is simply y = Hx. The coefficients of the filter are
collected into h := [h0, . . . , hL−1]T , with L− 1 denoting the filter
degree. Graph filters are of particular interest because they represent
linear transformations that can be implemented locally [5, 9].
Frequency domain representation. Leveraging the spectral de-
composition of S, graph filters and signals can be represented in the
frequency domain. To be precise, let us use the eigenvectors of S to
define the N × N matrix U := V−1, and the eigenvalues of S to
define the N × L Vandermonde matrix Ψ, where Ψij := (Λii)

j−1.
Using these conventions, the frequency representations of a signal
x and of a filter h are defined as x̂ := Ux and ĥ := Ψh, respec-
tively [4]. Exploiting such representations, the output y = Hx of a
graph filter in the frequency domain is given by

ŷ = diag
(
Ψh
)
Ux = diag

(
ĥ
)
x̂. (2)

Identity (2) is the counterpart of the celebrated convolution theorem
for temporal signals, and follows from H = V

(∑L−1
l=0 hlΛ

l
)
U

[cf. (1)] and
∑L−1

l=0 hlΛ
l = diag(Ψh); see e.g., [14] for a detailed

derivation. To establish further connections with the time domain, let
us consider the directed cycle graph whose adjacency matrix Adc is
zero, except for entriesAij = 1 whenever i = modN (j)+1, where
modN (x) denotes the modulus (remainder) obtained after dividing
x byN . If S = Adc, one can verify that: i) y = Hx can be found as
the circular convolution of h and x, and ii) both U and Ψ correspond
to the Discrete Fourier Transform (DFT) matrix. Interestingly, while
in the time domain U = Ψ, this is not true for general graphs.

3. BLIND IDENTIFICATION OF GRAPH FILTERS

The concepts introduced in the previous section can be used to for-
mally state the problem. For given shift operator S and filter degree
L− 1, suppose that we observe the output signal y = Hx [cf. (1)],
where x is sparse having at most S � N non-zero entries. For fu-
ture reference introduce the `0 (pseudo) norm ‖x‖0 := |supp(x)|,
where the support of x is supp(x) := {i |xi 6= 0} and hence
‖x‖0 ≤ S. The present paper deals with blind identification of
the graph filter (and its input signal), which amounts to estimating
sparse x and the filter coefficients h from the observed output signal
y. Such a challenging problem is a natural extension to graphs of
classical blind system identification, or blind deconvolution of sig-
nals in the temporal or spatial domains.

Remark 1 (Sparse input) Sparsity in x is well-motivated due to its
practical relevance and modeling value – network signals such as y

are oftentimes the diffused version of few localized sources, hereby
indexed by supp(x). In addition, the non-sparse formulation with
S = N is ill-posed, since the number of unknownsN +L in {x,h}
exceeds the number of observations N in y. Alternatively, a low-
dimensional subspace model for x could be also adopted to effec-
tively reduce the degrees of freedom in the problem [14].

Since the observed filter output is y = Vŷ = Vdiag
(
Ψh
)
Ux [cf.

(2)], the blind graph filter identification problem can be stated as the
following feasibility problem

find {h,x}
s. to y = Vdiag

(
Ψh
)
Ux, ‖x‖0 ≤ S. (3)

In other words, the goal is to find the solution to a set of bilinear
equations subject to a sparsity constraint in x. While very natural,
(3) is in fact a difficult problem due to the non-convex `0-norm as
well as the bilinear constraints. To deal with the latter, it is conve-
nient to rewrite the first constraint in (3) as

y = V
(
ΨT �UT )T vec

(
xhT ), (4)

where� denotes the Khatri-Rao (i.e., columnwise Kronecker) prod-
uct, and vec(·) is the matrix vectorization operator. To establish (4),
let uT

i and ψT
i denote the i-th rows of U and Ψ, respectively. It

follows from (2) that ŷi = (ψT
i h)(uT

i x) =
(
ψT

i ⊗uT
i

)
vec
(
xhT

)
,

where ⊗ denotes the Kronecker product. Upon stacking the entries
ŷi to form ŷ and then using y = Vŷ, the result follows by identify-
ing ψT

i ⊗ uT
i with the i-th row of

(
ΨT �UT

)T .
While (4) confirms that the filtered graph signal y is a bilin-

ear function of x and h, it also shows that y is a linear combi-
nation of the entries of the “lifted” rank-one, outer-product matrix
Z := xhT ∈ RN×L. In other words, there exists a linear map-
ping M : RN×L 7→ RN such that y = M(Z). Note that M
can be expressed in terms of a matrix multiplication with M :=

V
(
ΨT � UT

)T ∈ RN×LN , since y = Mvec(Z) as per (4). In
addition to being of rank one, note that the sparsity in x renders Z
row-wise sparse, i.e., rows zT

i indexed by {1, . . . , N} \ supp(x)
are identically zero. Building on the ideas in [7, 10], one can thus
pose the blind graph filter identification problem as a linear inverse
problem, where the goal is to recover a row-sparse, rank-one N ×L
matrix Z from observations y = M(Z). To this end, a natural for-
mulation to tackle such inverse problem is

min
Z

rank(Z)

s. to y=V
(
ΨT�UT )T vec

(
Z
)
, ‖Z‖2,0 ≤ S (5)

where ‖Z‖2,0 is equal to the number of non-zero rows of Z.
A basic question is whether (5) is equivalent to the original blind

identification problem. To give a rigorous answer, some definitions
are introduced next. For a given matrix U, spark(U) is the smallest
number n such that there exists a subgroup of n columns from U
that are linearly dependent [15]. Given a set of row indices I, define
the complement set of indices Ic := {1, . . . , N}\I and the matrix
UI formed by the rows of U indexed by I. Moreover, for a given
graph-shift operator S – fixed V, Ψ, and U – define the set Oy of
matrix minimizers of (5) as a function of y. Then, the following
result on the validity of the matrix problem formulation in (5) holds.

Proposition 1 Let | · | denote the number of non-repeated elements
of a set and IS be a set of row indices such that spark(UIS ) ≤ S.
Then
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Oy =
{
xhT

∣∣y =
∑L−1

l=0 hlS
lx, ‖x‖0 ≤ S

}
, (6)

for all y if and only if

min
IS

∣∣{λi}i∈Ic
S

∣∣ > L− 1. (7)

Proof: If we show that (7) is violated if and only if there exists a
rank-1 matrix Z = xhT such that V

(
ΨT �UT

)T vec
(
Z
)

= 0 and
‖Z‖2,0 ≤ S, then Corollary 1 in [16] completes the proof. Lever-
aging the fact that V is full-rank, the above system of homogenous
equations can be written as (ψT

i h)(uT
i x) = 0 for i = 1, . . . , N ,

where ψT
i denotes the i-th row of Ψ and similarly for U. Since

spark(UIS ) ≤ S, there exists x 6= 0 with ‖x‖0 ≤ S such that
(ψT

i h)(uT
i x) = 0 holds for i ∈ IS . Exploiting the Vandermonde

structure of Ψ, it follows that h 6= 0 satisfying the equality for
i ∈ IcS can be found if and only if (7) is violated. �

Ideally, when solving (5) for some output y one should recover the
set of outer products of all possible combinations of sparse inputs x
and filter coefficients h that can give rise to such output [cf. (6)].
This is not true in general [16, Theorem 1], however, Proposition 1
states conditions on the graph-shift operator [cf. (7)] for the desired
equivalence to hold. Notice that condition (7) does not guarantee
that the solution of (5) is unique, but rather that the outer product of
the desired sparse signal and filter coefficients is contained in Oy.
Conditions that guarantee identifiability of (5), i.e. uniqueness of
solution, are subject of ongoing investigation.

3.1. Algorithmic approach via convex relaxation

Albeit natural, problem (5) is challenging since both the rank and the
`0-norm are in general NP-hard to optimize; see e.g., [17]. Over the
last decade or so, convex relaxation approaches to tackle rank and/or
sparsity minimization problems have enjoyed remarkable success,
since they oftentimes entail no loss in optimality. The nuclear norm
‖Z‖∗ =

∑
k σk(Z), where σk(Z) denotes the k-th singular value

of Z, is typically adopted as a convex surrogate to rank(Z) [11,
17]. Likewise, the `2/`1 mixed norm ‖Z‖2,1 :=

∑N
i=1 ‖z

T
i ‖2 is

the closest convex approximation of ‖Z‖2,0 [18]. With τ denoting a
tuning parameter to control the rank versus row-sparsity tradeoff, a
convex heuristic is to solve

min
Z
‖Z‖∗ + τ‖Z‖2,1, s. to y = V

(
ΨT �UT )T vec

(
Z
)

(8)

hoping that the optimal solution is of rank one and has S non-zero
rows, so that we can recover x and h up to scaling.

Recovery of simultaneously low-rank and row-sparse matri-
ces from noisy compressive measurements was also considered
in [19] for hyperspectral image reconstruction. Recent theoreti-
cal results on recovery of simultaneously structured matrix models
suggest that minimizing only ‖Z‖2,1 could as well suffice [12];
see also [10]. Being convex, (8) is computationally appealing, in
fact off-the-shelf interior point solvers are available. Customized
scalable algorithms for large-scale problems can be developed to
minimize the composite, non-differentiable cost in (8). For instance
the solver implemented to run the numerical tests in Section 5 lever-
ages the alternating-direction method of multipliers (ADMM) [20];
see also [19] for a related proximal-splitting algorithm.
Refinement via iteratively-reweighted optimization. Instead of
substituting ‖Z‖2,0 in (5) by its closest convex approximation,
namely ‖Z‖2,1, letting the surrogate function to be non-convex can
yield tighter approximations, and potentially improve the statistical
properties of the estimator. In the context of sparse signal recovery
for instance, the `0 norm of a vector was surrogated in [21] by the
logarithm of the geometric mean of its elements.

Building on this last idea, consider replacing ‖Z‖2,1 in (8) with∑N
i=1 log(‖zT

i ‖2 + δ), where δ is a small positive constant. Since
the new surrogate term is concave, the overall minimization problem
is non-convex and admittedly more complex to solve than (8). With
k denoting iterations, local methods based on iterative linearization
of log(‖zT

i ‖2 + δ) around the current iterate zT
i (k), can be adopted

to minimize the resulting non-convex cost. Skipping details that can
be found in [21], application of the majorization-minimization tech-
nique leads to an iteratively-reweighted version of (8), namely solve
for k = 0, 1, . . .

min
Z
‖Z‖∗+

N∑
i=1

wi(k)‖zT
i ‖2, s. to y = V

(
ΨT �UT )T vec

(
Z
)

with weights wi(k) := τ/
(
‖zT

i (k − 1)‖2 + δ
)
. If the value of

‖zT
i (k−1)‖2 is small, then in the next iteration the regularization

term wi(k)‖zT
i ‖2 has a large weight, promoting shrinkage of that

entire row vector to zero. Numerical tests in Section 5 suggest that
few iterations of the iteratively-reweighted procedure suffice to yield
improved recovery of {x,h}, when compared to (8). At a more fun-
damental level, processing multiple output signals can aid the blind
identification task as well, and this is the subject dealt with next.

4. MULTIPLE OUTPUT SIGNALS

Suppose now that we have access to a collection of P (possibly time-
indexed) output signals {yp}Pp=1, each one corresponding to a dif-
ferent sparse input xp fed to the common graph filter H we wish to
identify. Although each of the P identification problems could be
solved separately (and naively) as per Section 3, the recovery perfor-
mance can be improved by tackling them jointly.

While extending the feasibility problem in (3) to this new setup
is straightforward [each output gives rise to a couple constraints as
in (3)], generalizing the formulation in (8) requires more work. To
this end, consider the NP × 1 supervector of stacked output sig-
nals ȳ := [yT

1 , ...,y
T
P ]T , and likewise for the unobserved inputs

x̄ := [xT
1 , ...,x

T
P ]T . Next, introduce the unknown rank-one matri-

ces Zp := xph
T , p = 1, ..., P , and stack them: (i) vertically in

Z̄v := [ZT
1 , ...,Z

T
P ]T = x̄hT ∈ RNP×L; and (ii) horizontally in

Z̄h := [Z1, ...,ZP ] ∈ RN×PL. Note that Z̄v is a rank-one matrix.
Further, when all xp share a common support, then so will all the
row-sparse matrices Zp (and hence Z̄h). These observations moti-
vate the following convex formulation [cf. (8)]

min
{Zp}Pp=1

‖Z̄v‖∗ + τ‖Z̄h‖2,1 (9)

s. to ȳ =
(
IP ⊗

(
V
(
ΨT �UT )T)) vec

(
Z̄h

)
where all P lifted bilinear constraints have been compactly ex-
pressed in terms of ȳ and vec

(
Z̄h

)
using a Kronecker product.

When the sparse support is not the same for all xp, matrix Z̄h is
not row-sparse. In that case, ‖Z̄h‖2,1 in (9) must be replaced with∑P

p=1 ‖Zp‖2,1, possibly adjusting individual tuning parameters τp
per signal. Either way, an efficient ADMM solver can be imple-
mented for the multiple signal setting as well, and extensive numer-
ical tests indicated that iteratively-reweighting as in Section 3.1 can
yield markedly improved recovery performance (cf. Section 5).

5. NUMERICAL RESULTS

We illustrate the performance of the blind graph filter identification
algorithm by solving (9) for different graphs G and varying the pa-
rameters L, S and P . Obtained estimates will be denoted by {x̃, h̃}.
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Fig. 1: (a) Rate of recovery of x and h as a function of S (non-zeros in x) and L (filter length) in 50-node Erdős-Rényi graphs for P = 1
(top) and P = 5 (bottom) output signals. (b) Refinement over (a) via iteratively-reweighted optimization. (c) Counterpart of (b) for the brain
network in [22]. (d) Recovery errors for several methods as a function of the number of observations in the brain network for L = S = 3.

In all cases we define the graph-shift operator as the adjacency ma-
trix of G, S = A. The “true” vectors x0 and h0 are drawn from
standard multivariate Gaussian distributions and are normalized to
unit length. Given x0 and h0, synthetic observations y are generated
from (4). The root-mean-square error RMSE := ‖x̃h̃T − x0h

T
0 ‖F

is adopted as figure of merit to assess recovery performance.
Random graphs. Defining a successful recovery as one with RMSE
smaller than 0.01, we empirically estimate the rate of successful re-
covery on Erdős-Rényi graphs (N = 50, p = 0.3) [23] as a function
of L and S by averaging the success over 10 realizations for each pa-
rameter combination; see Fig. 1(a). We solve (9) for P = 1 [which
reduces to (8); top figure] and P = 5 (bottom figure) output signals
for τ = 20. As expected, the difficulty of the problem increases
when either L or S increase, depicted in the figure by the black area
around the bottom-right corner. Moreover, we can appreciate the
benefit of considering multiple output signals, e.g., for P = 5 the
recovery rate when L = 2 and S = 7 is 0.8 whereas the corre-
sponding rate for P = 1 is 0.5. These rates can be substantially
improved via the iterative reweighing of the `2/`1 mixed norm; see
Fig. 1(b). Even for P = 1 (top) the recovery rate is not null for every
parameter combination, achieving a minimum of 0.3 for L = 5 and
S = 10. Moreover, this minimum can be increased to 0.6 by setting
P = 5 (bottom). For this latter setting, perfect recovery is achieved
consistently for most combinations of L and S.
Brain graph. We now consider a weighted undirected graph G of
the human brain, consisting of N = 66 nodes or regions of interest
(ROIs) and whose edge weights are given by the density of anatom-
ical connections between regions [22]. The level of activity of each
ROI can be represented by a graph signal x, thus successive appli-
cations of S model a linear evolution of the brain activity pattern.
Supposing we observe a linear combination (filter) of the evolving
states of an originally sparse brain signal, then blind identification
amounts to jointly estimating which regions were originally active,
the activity in these regions and the coefficients of the linear com-
bination. We mimic the recovery rate analysis performed for Erdős-
Rényi graphs and, due to the shown performance advantage, we re-
port the results obtained when using the iterative reweighing refine-
ment; see Fig. 1(c). As expected, the rates obtained for P = 5 (bot-
tom) are markedly better than those for P = 1 (top). Furthermore,
when comparing Figs. 1(b) and 1(c), it is immediate that, for fixed
L and S, recovery in the brain network is more challenging than
in Erdős-Rényi graphs. This can be explained by the marked struc-
ture of the brain network where nodes are divided into two weakly
connected halves (hemispheres). Hence, the output signals in one
hemisphere are not very informative about the input signals in the

opposite hemisphere, increasing the difficulty of recovery.
So far we have assumed that we observe the entire output sig-

nal y when trying to infer x and h. Nevertheless, it can be the case
that we can only observe a subset of the nodes of the graph and try
to recover the original signal and filter from this partial observation.
Specifically, in Fig. 1(d), we fix L = S = 3 and P = 1 and analyze
the error behavior – median errors across 50 realizations – as a func-
tion of the number of observations – accessible values of the output –
for different recovery algorithms. Apart from our rank minimization
(RM) algorithm we consider a naive least squares (LS) where we
solve (4) via a pseudoinverse. Moreover, we consider an alternating
minimization (AM) algorithm implemented in two iterative steps: i)
Given x, vector h is found as the least-squares solution of (2), and
ii) Given h, vector x is found by minimizing ‖x‖1 subject to (2)
followed by a thresholding operation to retain S non-zero values.
These two steps are repeated until convergence, and the algorithm
is initialized with the LS estimate of h. Finally, we consider as a
benchmark our RM method when the support of x is known (k.s.).

Our proposed method clearly outperforms the naive LS and the
AM approaches. E.g., for 60 observations, 6 less than the total num-
ber of nodes, our method achieves a median error of 0 while the
errors for AM and LS are 0.43 and 0.86, respectively. Obtaining
better results than LS is not surprising since this algorithm does not
leverage the fact that x is sparse. Further, notice that our method out-
performs AM even though the latter assumes that the value of S – but
not the support of x – is known. The big gap between RM and RM
(k.s.) represents the performance detriment associated to the support
of x being unknown. For situations where partial information about
the support is available, e.g. we know a priori that the input signal is
null on a subset of nodes, intermediate curves are obtained.

6. CONCLUSIONS

We studied the problem of blind graph filter identification, which
extends blind deconvolution of time (or spatial) domain signals to
graphs. The developed rank minimization approach outperforms
both the LS and AM algorithms and attains perfect reconstruction
over a wide range of sparsity levels S and filter lengths L in syn-
thetic and real-world graphs. Ongoing research addresses the issues
of identifiability and theoretical guarantees of the convex nuclear-
norm relaxation. Also of interest will be to investigate stable recov-
ery in the presence of noise. Finally, a major step forward would
be to also estimate the shift operator by bringing to bear methods
of network topology inference [3]; see also [6] for a recent related
approach to estimate the graph structure of graph signals.
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