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ABSTRACT

We present a novel algorithm — ProSparse Denoise — that
can solve the sparsity recovery problem in the presence of
noise when the dictionary is the union of Fourier and identity
matrices. The algorithm is based on a proper use of Cad-
zow routine and Prony’s method and exploits the duality of
Fourier and identity matrices. The algorithm has low com-
plexity compared to state of the art algorithms for sparse re-
covery since it relies on the Fast Fourier Transform (FFT) al-
gorithm. We provide conditions on the noise that guarantees
the correct recovery of the sparsity pattern. Our approach out-
performs state of the art algorithms such as Basis Pursuit De-
noise and Subspace Pursuit when the dictionary is the union
of Fourier and identity matrices.

Index Terms— Sparse representation, union of bases,
Prony’s method, denoising.

1. INTRODUCTION

We consider the problem of finding the sparse representation
of a signal in the union of Fourier and canonical bases when
the observation has been corrupted with additive noise. Let
the noiseless observation be given by

y[n] =
1√
N

Kp∑
k=1

ak e
j 2π
N mkn +

Kq∑
k=1

bk δ[n− nk], (1)

where 0 ≤ n < N . The parameters 0 ≤ m1 < . . . <
mKp < N and 0 ≤ n1 < . . . < nKq < N are integers that
correspond to the indices of the atoms that form the observed
signal and ak, bk ∈ C \ {0} their amplitudes. When noise is
present, the observed signal is given by

ỹ[n] = y[n] + ε[n], 0 ≤ n < N, (2)
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where ε[n] = εR[n] + j εI [n] are i.i.d. random variables for
0 ≤ n < N with the real and imaginary parts drawn from
N (0, σ2

ε). The observed signal can be written in matricial
form as follows y = Dx+ε = [F , I] [xTp , x

T
q ]
T +ε where

y, ε,xp,xq ∈ CN and x ∈ C2N .
The Compressed Sensing framework [3, 4, 8] presents a

wide range of algorithms to solve the noisy sparsity recovery
problem. The two traditional algorithms to solve this problem
are a variation of the Basis Pursuit algorithm known as Ba-
sis Pursuit Denoising (BPDN), and the Orthogonal Matching
Pursuit (OMP) algorithm [3, 5, 7, 8, 10, 12, 16]. In [17], the
Least Absolute Shrinkage and Selection Operator (LASSO)
method was presented to solve the sparse recovery problem.
More recently, a new set of greedy algorithms have been de-
veloped that present lower complexity than OMP with sim-
ilar performance guarantees: Compressive Sampling Match-
ing Pursuit (CoSaMP) [13] and Subspace Pursuit [6].

Recently a new method which exploits in full the special
structure of the dictionary D = [F , I] has been proposed.
The algorithm is based on a variation of Prony’s method and is
therefore called ProSparse (Prony’s based sparsity) [9]. In the
noiseless setting, ProSparse can recover signals over a much
wider set of sparsity levels than what BP can achieve [14, 15].

In this paper, we present a new algorithm that handles the
noisy sparse recovery problem of [3] and that is still based
around Prony’s ideas. In particular we couple the traditional
Prony’s method with Cadzow signal enhancement algorithm
[2] and call the new method ProSparse Denoise. The key in-
sight is that, for the observed signal given as in (1) and (2),
if we assume that the spikes are also part of the noise, we
can apply Cadzow’s algorithm to try to recover the original
Fourier atoms. Using duality we can also recover the spikes
by treating the Fourier atoms as noise. The approach leads
to a very fast algorithm that also outperforms state of the art
methods.

The rest of the paper is organised as follows: Section 2
presents the Cadzow denoising algorithm particularised to our
setup. Section 3 describes the novel ProSparse Denoise algo-
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Algorithm 1 Fast Cadzow—Denoising algorithm for circu-
lant matrices
Input: N noisy samples ỹ[n], number of complex exponentials K.
Output: Denoised samples y′[n].

1: ŷ[m] = DFTN {ỹ[n]}.
2: Set to zero N −K samples ŷ[m] that correspond to the smallest

values of |ŷ[m]|.
3: y′[n] = IDFTN {ŷ[m]}

rithm. Section 4 is an analysis of the algorithm from a prob-
abilistic point of view to establish a guaranteed performance
condition for the simple case where there is one Fourier atom
and one spike. Section 5 presents simulation results. We then
conclude in Section 6.

2. FINITE-DIMENSIONAL CADZOW AND
CIRCULANT MATRICES

In our context, the Cadzow algorithm is used to denoise sam-
ples that are given by a sum of exponentials corrupted with
additive noise. If we consider that the spikes are also part of
the noise, the noisy samples ỹ[n] can be written as follows:

ỹ[n] =

Kp∑
k=1

αk u
n
k + η[n], (3)

where the signal of interest corresponds to the sum of Kp

exponentials and the term η[n] includes the spikes and the
actual noise term ε[n] from (2). The Cadzow algorithm is
based on building the following Toeplitz matrix:

Ỹ toep =


ỹ[M ] ỹ[M − 1] . . . ỹ[0]

ỹ[M + 1] ỹ[M ] . . . ỹ[1]
...

...
. . .

...
ỹ[P ] ỹ[P − 1] . . . ỹ[P −M ]

 , (4)

where the matrix is built with a number of rows and columns
which are larger than the number of exponentials Kp, and is
made as square as possible. We note that in the absence of
noise this matrix has rankKp (see [1, 9]). Therefore, Cadzow
algorithm imposes the following two properties sequentially
at each iteration: 1. Find the closest matrix of rank Kp (in
the Frobenius norm sense) by computing the SVD of Ỹ toep

and setting to zero the smallest singular values. 2. Impose
a Toeplitz structure by averaging over the diagonal elements.
These two properties are applied until a stopping condition is
reached. This condition can be a maximum number of itera-
tions or the difference between the singular values of different
iterations being below a threshold. An interesting property of
this algorithm is that it can also be used to remove the spikes
of a signal that is made of Fourier atoms and spikes.

2.1. Fast circulant Cadzow algorithm

In our particular case, the parameters uk in (3) are
complex-valued and lie on a grid of size N on the unit

circle: uk = exp
(
j 2πN mk

)
, where k = 1, . . . ,Kp, and

0 ≤ m1 < . . . < mKp < N . Since we have access to N
samples ỹ[n], and due to the periodicity of the Fourier atoms,
the Toeplitz matrix can be extended to the following noisy
circulant matrix of size N ×N :

Ỹ circ =


ỹ[0] ỹ[N − 1] . . . ỹ[1]
ỹ[1] ỹ[0] . . . ỹ[2]
...

...
. . .

...
ỹ[N − 1] ỹ[N − 2] . . . ỹ[0]

 . (5)

This matrix is of full rank N due to the presence of noise.
The noiseless matrix Y circ with samples y[n] that are only
due to the complex exponentials, satisfies the rank deficiency
and the Toeplitz structure properties that are required to apply
Cadzow denoising algorithm. Therefore, we can also apply
the Cadzow strategy to denoise the circulant matrix Ỹ circ.
It is easy to verify that the noiseless matrix is of rank Kp

since it can be diagonalised as follows: Y circ = F ΛFH ,
where Λ = diag (ŷ[m])

N−1
m=0 and ŷ[m] = DFTN {y[n]} =∑N−1

n=0 y[n] exp (j2πmn/N) has exactly Kp non-zero ele-
ments at m = mk, k = 1, . . . ,Kp. Due to the circulant struc-
ture of this matrix, it follows that imposing the first property
to Ỹ circ (rank deficiency) yields a circulant matrix, and there-
fore the resulting algorithm is not iterative. That is, we do not
need to impose the second property since it is already satis-
fied and the Cadzow denoising algorithm stops after imposing
the first property in the first iteration. The resulting denoising
algorithm is described in Algorithm 1. This algorithm is fast
since it only needs to compute one DFT and one inverse DFT
which are performed using the Fast Fourier Transform (FFT)
algorithm. The complexity of this algorithm is O(N logN).
This is considerably better than the complexity of the original
Cadzow approach since the latter requires computing an SVD
at each iteration which has a complexity of O(N3).

3. NOISY SPARSE RECOVERY BASED ON
CADZOW AND PRONY

The strategy to remove spikes that has been presented in the
previous section is of particular interest to recover sparse
vectors in the scenario where the dictionary is the union of
Fourier and identity matrices. Note that when the spikes are
removed, part of the energy, and therefore of the amplitudes,
of the Fourier atoms is also removed. Therefore, instead of
removing all the spikes at once and getting an estimate of the
Fourier atoms, we can follow a different strategy where only
one spike is removed at each iteration. The general idea of
the algorithm is that if we compute the difference between the
original observation y and the Cadzow denoised vector y′,
this residual will mainly contain the spikes and the noise. We
also assume that the power of the noise is small compared to
that of the the spikes. We estimate one spike at each iteration,
remove the contribution of this spike, and iterate again until
all the spikes have been removed. Once the spikes have been
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Algorithm 2 ProSparse Denoise—Union of Fourier and
identity matrices

Input: Noisy vector y = [F , I]x + ε and sparsity (Kp,Kq).
Output: (Kp,Kq)-sparse vector x̃ = [xT

p , x
T
q ]T .

1: Initialise spikes xq = 0.
2: Initialise indices Ω = {0, 1, . . . , N − 1}.
3: Denoise y′ = Cadzow(y,Kp).
4: for i = 1 to Kq do
5: Compute residual r = y − y′.
6: Estimate spike location n0 = arg maxn∈Ω{|r[n]|}.
7: Store spike xq[n0] = r[n0].
8: Remove spike location from indices Ω← Ω \ {n0}.
9: Remove spikes to the observation y′ = y − xq .

10: Denoise y′ ← Cadzow(y′,Kp).
11: end for
12: Estimate Fourier atoms xp = Prony(y′,Kp).

removed, the Fourier atoms are estimated from this cleaned
vector y′ by applying Prony’s method.

This approach provides an estimate for the entire vector
x, that is, it estimates both, the Fourier atoms and the spikes.
However, in practice, ProSparse Denoise uses this algorithm
only to estimate the Fourier atoms. The same approach is then
applied to F y to estimate the spikes since, in F y, the spikes
correspond to complex exponentials. We then build the entire
sparse vector x by merging the Fourier atoms estimated from
y and the spikes estimated from F y. Note that both compu-
tations can be performed in parallel. The complete method is
described in Algorithm 2.

4. PERFORMANCE ANALYSIS

The signal model presented in (1) and (2) allows us to per-
form some probabilistic analysis of the performance of the
algorithm for a worst case scenario. In particular, we can es-
tablish a sufficient condition for the algorithm to succeed for
the simple case where there is only one Fourier atom and one
spike. This condition is then validated with numerical simu-
lations.

The first step of the denoising algorithm operates in the
Fourier domain and selects the Fourier atoms by picking
the samples with the largest amplitudes. When there is one
Fourier atom and one spike, the worst case scenario corre-
sponds to the case where the noise and the Fourier transform
of the spike sum destructively with the Fourier atom, the am-
plitude of the noise at this location is maximum, and there is
another location where the noise also reaches the maximum
amplitude. We first note that since our noise model is based
on complex-valued i.i.d. Gaussian random varibles, the abso-
lute value of the noise term, that is |ε[n]| =

∣∣εR[n] + j εI [n]
∣∣,

follows a Rayleigh distribution. It can be verified that for
large N , the maximum value of a collection of N random
variables that follow a Rayleigh distribution with parameter
σε is equal to σε

√
2 logN with high probability.

N
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Fig. 1: Guaranteed performance of noisy sparse recovery with 1 Dirac and
1 Fourier atom for different levels of noise. 50 iterations per noise level.
The success is measured by checking that the support is correctly retrieved at
each iteration. The amplitudes of the atoms are fixed and are equal to 1/

√
2

for both the real and imaginary parts. The location of the Fourier atom is
m1 = 1 and the location of the spike, n1, satisfies (7). The red line depicts
the equation σ = (1− 1/

√
N)(
√
8 logN) from (8).

Let us assume that the Fourier atom and the spike have
the same amplitude: aR1 = aI1 = bR1 = bI1 = 1/

√
2. If the

Fourier atom is located at m = m1, the noiseless sample of
the Fourier transform at m = m1 is given by

ŷ[m1] = ejπ/4 +
1√
N
ej(π/4−2πn1m1/N). (6)

The Fourier atom and the spike sum destructively when the
phase of the second complex exponential in the previous
equation has a difference of π radians (modulo 2π) with the
phase of the first complex exponential, that is:

mod (n1m1, N) =
N

2
. (7)

This establishes a condition on m1 and n1 to have a destruc-
tive interaction between the Fourier atom and the Fourier
transform of the spike. In that case, the resulting amplitude is
given by |y[m1]| = 1− 1√

N
.

In the worst case scenario, the amplitude of the noise at lo-
cation m = m1 is maximum, that is |ε[m1]| = σε

√
2 logN ,

and sums destructively with the Fourier atom’s amplitude.
Moreover, we assume that another location m 6= m1 also
presents a noise sample with this same amplitude. We can
therefore establish the following sufficient success condition
that guarantees that in the worst case scenario we are still
able to detect the Fourier atom: 1 − 1√

N
− σε

√
2 logN >

σε
√
2 logN , which leads to

σε <
1− 1/

√
N√

8 logN
. (8)

Figure 1 illustrates an empirical validation of the deriva-
tion in Equation (8). For different sizes of the problem, and
different levels of noise, the sparse vector is reconstructed ap-
plying the algorithm described in the previous section. The
red line depicts the bound established in Equation (8). We can
observe that when the noise has a power below this bound the
algorithm always succeeds, confirming the predicted result.
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(a) SNR = 10 dB, bias = 50%.
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(b) SNR = 5 dB, bias = 50%.
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(c) SNR = 10 dB, bias = 25%.
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(d) SNR = 5 dB, bias = 25%.

Fig. 2: Union of Fourier and identity bases, each of size N ×N with N = 256. Simulation results with Kq = bias ·K spikes and Kp = K −Kq Fourier
atoms. 1000 realisations per sparsity level (100 non-zero locations uniformly drawn at random and for each realisation of the non-zero locations 10 realisations
of the amplitudes drawn fromN (0, 1) for the real and imaginary parts). Results denoted by PSDN correspond to the proposed algorithm.

5. SIMULATION RESULTS

The noisy sparse recovery algorithm has been tested against
state of the art algorithms such as BPDN, OMP, LASSO and
Subspace Pursuit (denoted by SUB). Figure 2 presents the
results where we have measured the MSE of the recovered
sparse vector and the probability that the algorithms recover
the exact support of the original sparse signal. Specifically,
for a given sparsity level and SNR, 100 different supports of
the sparse vector x ∈ C2N are generated uniformly at ran-
dom; and for each realisation of the support, 10 different re-
alisations of the amplitudes of x and of the the noise vector
ε are generated such that the observation y = Dx + ε sat-
isfies the specified SNR. All the amplitudes are Gaussian dis-
tributed and complex-valued. At each realisation, all the algo-
rithms reconstruct a sparse vector from the noisy observation
y. Simulations have been performed for 4 different scenar-
ios that correspond to SNR levels of 5 and 10 dB with a bias
in the number of atoms from one dictionary with respect to
the other of 25 and 50 %. A bias of 25 % means that there
are K/4 spikes and 3K/4 Fourier atoms (the different values
of K are chosen so that these numbers are always integers).
From the results, it is clear that ProSparse Denoise consis-
tently outperforms state of the art algorithms at all noise and
sparsity levels.

Besides the gain in performance, it is also important to
note that this novel algorithm is faster than the other algo-
rithms in the majority of scenarios. Execution times have
been measured during these simulations and are summarised
in Table 1. These measurements are obtained by averaging
over the multiple realisations of each sparsity level. The ex-
periments have been run using a commercial laptop (tested
on a 2.5GHz Intel Core i5 CPU) and all the algorithms were
implemented in MATLAB. We used the CVX package to im-
plement the BPDN optimisation problem because it was giv-
ing the best performance compared to other optimisation tool-

boxes [11]. LASSO was tested using MATLAB’s implemen-
tation. OMP has been implemented for the simulations and
the implementation of Subspace Pursuit downloaded from the
authors’ website. For sparsity levels that go beyond 16 for
N = 256 ProSparse Denoise is the fastest of all the algo-
rithms.

Table 1: Average execution time of sparse recovery algorithms, N = 256.

K PSDN BPDN OMP LASSO SUB

4 0.0098 33.0813 0.2442 0.1503 0.0055
8 0.0112 29.3087 0.4779 0.1565 0.0087
12 0.0136 27.8360 0.7159 0.1722 0.0110
16 0.0151 27.2135 0.9560 0.1921 0.0165
20 0.0171 26.7477 1.1906 0.2038 0.0195
24 0.0202 26.7861 1.4324 0.2183 0.0230
28 0.0216 25.8907 1.6440 0.2318 0.0251
32 0.0203 22.9313 1.6568 0.2218 0.0250

6. SUMMARY

A novel algorithm has been presented to solve the sparse re-
covery problem in the noisy scenario. This new approach is
based on an extension of the Cadzow denoising algorithm for
the finite-dimensional case. This extension is combined with
an iterative spike removal algorithm to obtain a cleaned signal
that only contains Fourier atoms. These atoms are then esti-
mated using Prony’s method. The overall algorithm is able to
solve the sparsity problem faster, and with higher precision,
than state of the art algorithms. We note that traditional com-
pressed sensing methods are more flexible, in the sense that
they can solve the sparsity problem for generic dictionaries.
However, our method outperforms these algorithms because
it fully exploits the particular structure of the dictionary at
hand: the union of Fourier and identity matrices.
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