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ABSTRACT

Discovering the underlying structure of a high-dimensional signal or
big data has always been a challenging topic, and has become harder
to tackle especially when the observations are exposed to arbitrary
sparse perturbations. In this paper, built on the model of a union of
subspaces (UoS) with sparse outliers and inspired by a basis pursuit
strategy, we exploit the fundamental structure of a Grassmann man-
ifold, and propose a new technique of pursuing the subspaces sys-
tematically by solving a non-convex optimization problem using the
alternating direction method of multipliers. This problem as noted
is further complicated by non-convex constraints on the Grassmann
manifold, as well as the bilinearity in the penalty caused by the sub-
space bases and coefficients. Nevertheless, numerical experiments
verify that the proposed algorithm, which provides elegant solutions
to the sub-problems in each step, is able to de-couple the subspaces
and pursue each of them under time-efficient parallel computation.

Index Terms— robust subspace pursuit, union of subspaces
(UoS), Grassmann manifold constrained optimization, non-convex
ADMM, parallel computation

1. INTRODUCTION

Recovering information or an underlying signal from noisy mea-
surements has always been at the center of many signal processing
problems. Many functional bases approaches have been proposed
over the last two decades starting with a multiscale and nonlinear
approximations of signals [1], including other robust reconstruction
approaches [2], and more recent similarly inspired techniques [3, 4].
One approach which particularly caught the attention of researchers
was that of a representation pursuit, such as the Matching Pursuit [5]
and the Basis Pursuit [6], on account of their adaptive representation
and hence recovery and of their high efficiency.

When the structure of the data deviates from the perennial vector
subspace assumption, e.g., a curved space-manifold, or sets of sub-
spaces, the recovery becomes challenging. Such subspace structures
have also recently witnessed a resurgence, as in the recent works on
subspace clustering [7–9] which show a particularly interesting and
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a promising potential of sparse models. In [7], a low-rank represen-
tation (LRR) also recovers subspace structures from sample-specific
corruptions by jointly pursuing the lowest-rank representation of all
data. The contaminated samples are sparse among all sampled data.
Applications of such critical and important problem are available in
signal processing, computer vision, and data mining [10]. Robust
principal component pursuit is particularly successful in recovering
low dimensional structures of high dimensional data from arbitrary
sparse errors [11].

From another aspect, works in retrieving structural data, such as
dictionary [12], low-rank matrix [13], and subspace [14–16], via op-
timization problems on manifolds have unveiled interesting geome-
try insights. In works [17–19], subspace projection matrix recovery
from noisy partial information, as a subspace estimation problem,
has been studied via non-convex optimization on a Grassmann man-
ifold, and algorithms and theoretical recovery conditions are estab-
lished by further exploiting the manifold structure.

Moreover, successful applications of sparse models in computer
vision and machine learning [20] [21] have increasingly hinted at a
more general model, namely that the underlying structure of high
dimensional data looks more like a union of subspaces (UoS) [8,
9, 22–24] rather than one low dimensional subspace. In [22], the
natural question about the feasibility of such an approach in high
dimensional data modeling where the union of subspaces is further
impacted by sparse errors, is addressed. This problem is intrinsically
difficult, since the underlying subspace structure is also corrupted by
unknown errors, which may lead to unreliable measurement of dis-
tance among data samples, and make data deviate from the original
subspaces.

In this paper, built on the UoS with sparse outliers data model
and inspired by a basis pursuit strategy, we exploit the fundamen-
tal structure of a Grassmann manifold, and propose a new technique
where the subspaces of a UoS are systematically pursued by solving
non-convex optimization problem on a Grassmann manifold. This
problem as noted is further complicated by non-convex constraints
as called for by the Grassmann manifold, as well as the bilinearity
in the penalty caused by the subspace bases and coefficients. Nev-
ertheless, the proposed algorithm gives an elegant solution to the
Grassmann manifold-constraint part, and decouples the subspaces
and admits parallel computation.

The following text is organized as follows. In Section 2, the
background is reviewed and the problem is formulated as an op-
timization functional. In Section 3, the derivation is conducted to
solve this optimization problem. In Section 4, we illustrate this ap-
proach by numerical experiments, and finally draw some concluding
remarks in Section 5.
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2. BACKGROUND AND PROBLEM FORMULATION

2.1. Grassmann Manifold

Definition 1. [25] A Grassmann manifold Grd,l is the set of l-
dimensional linear subspaces of Rd, and is an l(d− l)-dimensional
compact manifold. It can be formally written as a quotient manifold

GrN,s :=
O(N)

O(s)×O(N − s) , (1)

where O(N) is the N ×N orthogonal matrix group. A representa-
tive element of Grd,l is a d× l orthonormal matrix S.

The projection distance defined on Grd,l is as the following.

∀S,V ∈ Grd,l, dp(S,V) :=
1

2
‖SST −VVT‖2F =

l∑
i=1

sin2 θi,

where {θi}li=1 are the principal angles between the two subspaces S
and V . In this work, we use dp to evaluate the distance between the
target subspace and the estimated subspace.

2.2. Problem Statement and Formulation

We are given a d×n data matrix X whose structure is a mixture of a
noise-free component and perturbation of outliers, and hence admits
a decomposition X = L + E. The matrix E is thus a sparse matrix,
and the columns of L belong to k unknown l-dimensional subspaces
{S1, · · · ,Sk}. We denote the orthogonal bases of Sj by Sj ∈ Rd×l,
then L =

∑k
i=j Sjαj , where αj ∈ Rl×n. Our aim is to recover E

and {S1, · · · ,Sk} from X.
To that end, the recovery of L in its assumed structure proceeds

by a sparse constraint on E, which is in turn, reflected by its `1 norm
(the vector norm) as a convex relaxation of its `0 norm. Each data
point Xi, which is the ith column of X, is supposed to be only rep-
resented by the base vectors of its own subspace, i.e., for each i the
vector αi := [‖αi1‖2, · · · , ‖αik‖2] should only have one nonzero
element, in which αij is the ith column of αj . This, in turn, requires
a sparse constraint on each αi, i.e., its `1 norm should also form a
penalty function as well.

In light of the above, and towards recovering L and its asso-
ciated orthogonal bases and E, we propose to solve the following
optimization problem to find E and {S1, · · · ,Sk} from X.

min
E,Sj ,αj ,j=1,··· ,k

λ‖E‖1 +
k∑
j=1

n∑
i=1

‖αij‖2

s.t. X = E +

k∑
j=1

Sjαj , Sj ∈ Grd,l, j = 1, · · · , k. (2)

For the given Grassmann manifold Grd,l, our search is for l di-
mensional subspaces in Rd. A brief and careful inspection of (2)
reveals that the bilinearity of α and Sj , j = 1, · · · , k, term results
in the non-convexity of problem (2). This in turn, suggests our adop-
tion of ADMM [26] as a strategy towards a solution. Keep the Sj
constraints in (2), and the augmented Lagrangian is as follows,

L(E,Sj ,αj ,Y) = λ‖E‖1 +
k∑
j=1

n∑
i=1

‖αij‖2

+ 〈Y,X−E−
k∑
j=1

Sjαj〉+
µ

2

∥∥∥∥∥X−E−
k∑
j=1

Sjαj

∥∥∥∥∥
2

F

.

3. SUBSPACE PURSUIT ANALYSIS

Proceeding in a similar spirit as basis pursuit [6], we propose to solve
for a basis pursuit on a Grassmann manifold by solving the following
optimization problem,

max
Y

min
E,Sj ,αj

L(E,Sj ,αj ,Yi), s.t.Sj ∈ Grd,l, j = 1, · · · , k,

(3)

which we next propose to independently and iteratively solve over
E,αj ,Sj , j = 1, · · · , k and Y, where the global iteration number
is denoted by t.

3.1. Algorithmic Derivation

We first show that the minimization sub-problem over E has a
closed form solution, when accounting for the decoupled nature of
the columns of E. As a result, the problem admits a column-wise
parallel solution.
Claim 1: Solution of Problem (3) over E is solved by

min
Ei

λ‖Ei‖1 − 〈Yt
i ,Ei〉+

µ

2

∥∥∥∥∥Ei −Xi +

k∑
j=1

Stjα
t
ij

∥∥∥∥∥
2

2

. (4)

This is readily established by first denoting each column of E by Ei.
Solving the above sub-problems (4) in parallel for i = 1, · · · , n is
equivalent to solving minE L(E,S

t
j ,α

t
j ,Y

t). The solution can be
written as the proximal operator of the `1 norm, whose closed form
solution is calculated by soft-thresholding [27].

Et+1
i = prox µ

2λ
‖·‖1

(
Xi −

k∑
j=1

Stjα
t
ij +

Yt
i

µ

)
. (5)

The next step in solving the formulated optimization problem (3),
is the sub-problem over the coefficient set α. Specifically, for each
αij , the iteration is parallel in i but not in j, to state the following.
Claim 2: Each such sub-problem entails,

min
αij
‖αij‖2 − 〈Yt

i ,S
t
jαij〉

+
µ

2

∥∥∥∥∥Xi −Et+1
i −

∑
p<j

Stpα
t+1
ip −

k∑
p>j

Stpα
t
ip − Stjαij

∥∥∥∥∥
2

2

.

(6)

This also admits a closed form solution as

αt+1
ij = proxµ

2
‖·‖2

((
Stj
)T

vij
)
, (7)

where

vij = Xi −Et+1
i −

∑
p<j

Stpα
t+1
ip −

k∑
p>j

Stpα
t
ip + Yt

i/µ.

For fixed j, the above can be computed in parallel for i = 1, · · · , n.
The third key step in attaining our overall solution, entails solving
the minimization problem for each Sj ∈ Grd,l. Such a manifold
optimization problem, while in appearance daunting even by way of
an iterative on account of the non-convex Grassmann manifold, may
in fact be shown to admit a closed form solution as we elaborate
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next.
Claim 3: The optimized subspace pursuit over Grd,l is achieved by,

St+1
j = arg min

Sj∈Grd,l
〈Yt,−Sjα

t+1
j 〉

+
µ

2

∥∥∥∥∥X−Et+1 −
∑
p<j

St+1
p αt+1

p −
k∑
p>j

Stpα
t+1
p − Sjα

t+1
j

∥∥∥∥∥
2

F

= arg min
Sj∈Grd,l

〈
Yt + µ

(
X−Et+1

−
∑
p<j

St+1
p αt+1

p −
k∑
p>j

Stpα
t+1
p

)
,−Sjα

t+1
j

〉

= arg min
Sj∈Grd,l

〈(
−Yt/µ−X + Et+1

+
∑
p<j

St+1
p αt+1

p +

k∑
p>j

Stpα
t+1
p

)
· (αt+1

j )T,Sj

〉
. (8)

The follow up closed form solution is obtained by first defining the
singular value decomposition of(

Et+1 +
∑
p<j

St+1
p αt+1

p +

k∑
p>j

Stpα
t+1
p − Yt

µ
−X

)
· (αt+1

j )T

as UΣVT, then 〈UΣVT,Sj〉 = 〈VTST
j U,Σ〉. Since each entry

of matrix VTST
j U is not larger than 1, and Σ is diagonal, we have

〈VTST
j U,S〉 ≥ 〈−I,Σ〉, and the equality holds when

Sj = −UVT.

The above calculation for St+1
j requiring a singular value de-

composition, is not parallel for j. This, as result, may entail a signif-
icant computational burden for large scale problems.
Claim 4: Towards lifting such a limitation, we propose to de-couple
{Sj}kj=1 by the following update of each αij at the end of the second
step.

αt+1
ij =

{
α̂t+1
ij , j = arg max

j=1,··· ,k
‖α̂t+1

ij ‖2,
0, otherwise,

(9)

where α̂t+1
ij is the output of the second step.

Since each data point in L should only belong to one subspace,
for each fixed i we only preserve the column αij with the largest `2
norm, while the others are set to 0. For a fixed i, denote the selected
j as j(i). The benefit in so doing is that the objective function can
be simplified, since if j = j(i), then {αip}p6=j are all zeros, and
if j 6= j(i), then αijSj vanishes. Therefore, (8) is simplified as
follows.

St+1
j =arg min

Sj∈Grd,l

n∑
i=1

〈Yt
i ,Xi −Et+1

i − Sj(i)α
t+1
ij(i)
〉 (10)

+
µ

2

n∑
i=1

‖Xi −Et+1
i − Sj(i)α

t+1
ij(i)
‖22

=arg min
Sj∈Grd,l

n∑
i=1

1[j(i)=j]
〈µEt+1

i − µXi −Yt
i ,Sjα

t+1
ij 〉

=−UVT, (11)

Table 1. Algorithm
Input: Data matrix X ∈ Rd×n, d, n, k, l,

Initial iterate S0
j ∈ Grd,l,α

0
j , j = 1, · · · , k,Y0;

Algorithm parameters λ, µ;
Output: Ê, Ŝj , j = 1, · · · , k.
For t = 0, 1, 2, · · · do:

1.For i = 1, . . . , n, do in parallel:
Update Et+1

i by (5) ;
2.For j = 1, . . . , k, do:

For i = 1, . . . , n, do in parallel:
Update α̂t+1

ij by (7) ;
3.For i = 1, . . . , n, do in parallel:

Update αt+1
ij by (9) ;

4.For j = 1, . . . , k, do in parallel:
Update St+1

j by (10)
5.Update Yt+1 by (12)

Until: Stopping criterion satisfied;

where U and V are from the singular value decomposition of the
matrix

∑n
i=1 1[j(i)=j]

(µEt+1
i − µXi − Yt

i)(α
t+1
ij )T. Therefore,

this step can be computed in parallel for each Sj .
The last step in the algorithm proceeds with the dual ascent, and

is carried out by

Yt+1 = Yt + µ

(
X−Et+1 −

k∑
j=1

St+1
j αt+1

j

)
. (12)

For conciseness, the above details are summarized in the following
Table 1.

4. NUMERICAL EXPERIMENTS

For such non-convex ADMM algorithm, the convergence is not the-
oretically insured, and is highly dependent on the parameter µ and
λ, and the initial values. In the simulations, we choose the initial
values for S0

j from the column space of X, and the initial value
for Y0 is the zero matrix. The stopping criterion is either that the
number of iterations has reached to a maximum or that the primal
residue ‖Yt+1 − Yt‖F ≤ ε. The subspace error is computed by∑k
j=1 ‖S

∗
j (S
∗
j )

T − Ŝj(Ŝj)
T‖2F , and the E-error is computed as

‖E∗−Ê‖2F . For the true values, E∗ is randomly generated with uni-
formly random non-zero positions and Gaussian distributed random
values, and L∗ is randomly generated with orthogonalized Gaussian
matrices S∗j and Gaussian distributed coefficients α∗.

In the following, we will demonstrate numerical results both
with fixed µ and with incremental µ respectively.

4.1. Fixed µ

An example of the convergence curves is in Fig. 1, in which there
are n = 45 data points in R10, k = 3, l = 3, and the number of
non-zero elements in E∗ is 4. From Fig. 1, we can see that, on the
one hand, if λ is too small relative to µ, then the recovered Ê is not
sparse enough, so the error is larger. On the other hand, if λ and µ
increase at the same time and become too large, then the algorithm
becomes hard to converge.

According to the previous inspection, in the next experiment,
we test the optimal λ and µ for 100 randomly generated data sets. In
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Fig. 1. convergence curves
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Fig. 2. probability of recovery for random data, n = 24, d = 12,
l = 2, k = 2

each trial, the number of points n = 24, the dimension of the am-
bient space d = 12, the number of subspaces k = 2, the dimension
of each subspace l = 2, and the sparsity of E∗ is 3. The simula-
tion results are the dashed curves in Fig. 2. Note that for successful
recovery, we mean that the error is less than 0.01. Firstly, the prob-
ability of recovering subspaces is higher than that of recovering E.
When λ = 1 the gap is the largest, since λ is too small to induce
proper sparsity. Secondly, unlike some other non-convex ADMM
algorithms [28], simply increasing µ does not ensure better conver-
gence for the proposed algorithm. We can see that a relatively better
choice is λ = µ = 2, and the probability of recovery is about 0.93.

4.2. Adaptive µ

For a better convergence behavior, we propose to use adaptive µ
during the iterations. To be specific, we set µt+1 = ρtµ0 and ρ > 1.

In the following experiment, the optimal λ and µ0 are tested for
100 random data, and ρ = 1.00001. The data settings are the same
as the previous experiment, and the results are the solid curves in Fig.
2. Compared with the dashed curves, the convergence performance
is improved, and with λ = 2 and µ0 = 0.22, the probability of
subspace recovery reaches 1.

For a better understanding of the choice of parameters λ and µ,
we test the subspace recovery probability with various λ and µ0 in
Fig. 3. In this experiment, ρ = 1.00001, n = 24, d = 12, l = 2,
k = 3, and the sparsity level of E∗ is 3. Each probability is counted
from 100 random trials. From the result, we first see that when µ0 >
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Fig. 3. probability of recovery for random data, n = 24, d = 12,
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λ the recovery is hardly achieved. Secondly, when µ0 < λ the
probability of recovery generally decreases as λ increases from 1 to
1000. The optimal choice in this experiment is λ = 1 and µ0 = 0.1.

5. CONCLUSION

In this paper an optimization problem with constraints on Grass-
mann manifold is formulated to model the robust subspace pursuit
problem of recovering a union of subspaces from a data matrix cor-
rupted by sparse errors. Adopting the strategy of ADMM, the sparse
errors, the representation coefficients, and the latent subspaces are
iteratively solved in parallel by columns. Because of the non-convex
constraint and the bilinearity in cost function, the convergence to a
global optimum is difficult to be theoretically guaranteed. However,
numerical simulations demonstrate that with elaborately selected pa-
rameter set, the union of subspaces can be successfully recovered in
a large probability close to unitary.

This work is not exhausted, and there are further works to do
on such problem. The optimal choice of λ is to be theoretically
analyzed for a given relative sparsity level between E and the co-
efficients. For the algorithm, the impact of µ on the convergence
behavior is to be theoretically studied.
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