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Abstract—Recent developments in information technology have
enabled us to collect and analyze high dimensional and higher
order data such as tensors. High dimensional data usually lies in a
lower dimensional subspace and identifying this low-dimensional
structure is important in many signal and information processing
applications. Traditional subspace estimation approaches have
been limited to vector-type data and cannot effectively deal with
these high order datasets. Moreover, most of the existing methods
are batch algorithms which can’t handle streaming data. In this
paper, we propose a new tensor subspace tracking approach to
identify changes in dynamic networks. The proposed approach
recursively estimates low-rank subspace of higher order data
and decomposes it into low-rank and sparse components. The
proposed approach is evaluated on both simulated and real
dynamic networks.

Index Terms—Tensor algebra, robust principal component anal-
ysis, low-rank tensor approximation, tensor subspace tracking.

I. INTRODUCTION

High dimensional data mostly lies in a lower dimensional subspace
and principal component analysis (PCA) is the most widely used
technique to identify this lower dimensional subspace. However,
PCA suffers much from corrupted data and may find a completely
wrong principal subspace in the presence of even a few outliers.
These drawbacks have forced researchers to develop more robust
subspace estimation techniques, e.g. Robust PCA (RPCA) which is
a significantly more difficult problem than standard PCA [1], [2].

Since the recent work by Candes et al. and Chandrasekaran et al.
[3], [4], the general problem of separating a sparse matrix and a low-
rank matrix from their sum has received a lot of attention. The final
goal usually is to either find the column span of the low-rank matrix
or the support of the sparse one. This is now commonly referred
to as the ”low-rank + sparse recovery” problem. There has been a
large amount of recent work on batch methods for low-rank + sparse
recovery and its various extensions such as Principal Component
Pursuit, Outlier Pursuit and Low-Leverage Decomposition [5]–[18].

With the increase in the amount of streaming data, approaches
developed for static data become limited. For streaming data, using
recursive approaches are more advantageous to reduce the com-
putational complexity and to achieve real-time subspace tracking.
Various online approaches have been proposed to solve the RPCA
problem, i.e. GRASTA, PETRELS and REPROCS [19]–[27]. These
approaches first identify the subspace that the low rank data lies in,
then recovers incoming low-rank measurement vectors from missing
entries by considering this subspace information. To address this
issue, GRASTA performs incremental gradient descent on Grassman
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manifolds to estimate and track the subspace, while PETRELS uses
least squares estimation recursively. REPROCS on the other hand
applies sparse recovery to provide better estimation for the sparse
noise at each time point, then subtracts the sparse component from
the measurement vector to obtain an estimate of the low-rank part.
All of these methods are designed for vector type measurements, and
cannot be applied directly to higher order datasets such as tensors.

Recently, some computationally efficient approaches have been
proposed to track and update subspace information for dynamic
tensors such as dynamic tensor analysis, streaming tensor analysis
and window based tensor analysis [28], [29]. However, the main
focus of these approaches is analyzing streaming datasets efficiently
without addressing the robustness of the subspace estimates to
outliers. Moreover, these methods do not necessarily recover a low-
rank structure and require updates at each time point. More recently,
Mardani et al. [30] proposed an online subspace learning method
based on nuclear norm minimization and extended this approach for
matrices and higher order datasets. Extension of this algorithm to
tensors takes advantage of parallel factor analysis (PARAFAC) model
to minimize tensor rank and considers temporal information as one
of the tensor modes.

In this paper, we propose a low-rank plus sparse structure learning
algorithm for higher order datasets such as matrices and tensors. The
proposed approach relies on recovering a low-rank subspace estimate
along each mode of the data where the rank is defined through the
Tucker rank. This rank definition is directly related to the community
structure in network type data. In this paper, we adapted a recently
introduced vector based online algorithm REPROCS [24] to 2-way
tensors (matrices) in order to track dynamic networks. The goal of
the proposed approach is to separate the low-rank part of the data
from sparse noise components in real time by updating the estimates
of low-rank subspaces. We evaluate the proposed framework by
applying it to a set of simulated and real networks.

II. BACKGROUND

A. Recursive Projected Compressive Sensing (REPROCS)

Let Mt ∈ Rn×1 be a time-series of measurement vectors written
as Mt = Lt +St where Lt is the low-rank component which lies in
a subspace spanned by Pt and St is the sparse noise vector. Let P̂t
be an accurate estimate of the r-dimensional subspace Pt at time t
and P̂t,⊥ be the orthogonal complement of P̂t . Let αt := P̂′tLt be the
projection of Lt onto P̂t and βt := (P̂t,⊥)

′Lt be a projection of Lt
onto P̂t,⊥. Then, Mt can be rewritten as Mt = P̂tαt + P̂t,⊥βt +St .

REPROCS first projects the measurement vector onto P̂t,⊥ to ap-
proximately nullify the low-rank component Lt . Let yt := (P̂′t,⊥)Mt ,
then yt can be rewritten as yt = (P̂′t,⊥)St +βt , and the dimension of
the projected data vector reduces to n− r. Since P̂t is an estimate
of Pt , βt can be interpreted as small noise. Therefore, solving for
n-dimensional St from (n− r)-dimensional yt becomes a traditional
sparse recovery problem. Once Ŝt is recovered, Lt can be estimated
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as L̂t = Mt − Ŝt . Performance of this algorithm highly depends on
the correctness of the estimated low-rank subspace and the slowly
changing subspace assumption [24]–[27].

B. Compressive Sensing of Matrices

In this section, we briefly review matrix recovery from compressed
measurements presented in [31], [32]. Let X∈RN1×N2 be an s-sparse
matrix with ‖ X ‖0≤ s and Ui ∈ Rmi×Ni be measurement matrices
which satisfy RIP2s property for some δ2s ∈ (0,

√
2−1). Define

Y = U1XU>2 +E, Y ∈ Rm1×m2 , (1)

where E = [e1, ...em2 ] denotes the noise matrix. Suppose that the
entries of E are independent and identically distributed (i.i.d.), and
assume that ‖ ei ‖≤

ε
√

m2
which implies ‖ E ‖F≤ ε for some real

nonnegative number ε . X can be recovered as follows. Let y1, ...,ym2
denote the columns of Y and ẑi ∈ RN1 be a solution of

ẑi = min‖ zi ‖1,‖ yi−U1zi ‖2≤
ε
√

m2
, i ∈ {1, 2, ..., m2}. (2)

Then each ẑi is unique and s-sparse. Let Z be XU>2 and Ẑ ∈
RN1×m2 be the matrix whose columns are ẑ1, ..., ẑm2 , then ‖ ẑi −
zi ‖2≤ C2

ε
√

m2
implies ‖ Ẑ−Z ‖2≤ C2ε [32]. Let v1, ...vN be the

rows of Ẑ. Then ŵ j ∈ R1×N2, the jth row of X can be recovered
similar to eqn. 2, ŵ>j = min‖ w>j ‖1 subject to ‖ v>j −U2w>j ‖2≤
C2

ε√
N1

, j ∈ {1, 2, ..., N1} yielding ‖ X̂−X ‖F≤C2
2ε .

III. RECURSIVE LOW-RANK + SPARSE STRUCTURE

IDENTIFICATION FOR MATRICES

A. Problem Definition & Approach

In this paper, we will state the problem and its solution for a matrix
at each time point by considering matrices as 2-way tensors. The
developed solutions can be easily extended to higher order tensors.

Let Mt ∈ RN1×N2 be a 2-way tensor representing a network
structure at time t. We represent Mt as:

Mt = Lt +St (3)

where St is the s-sparse tensor and Lt is the dense component which
is low rank along each mode with rank(L(i)

t )�min(Ni,∏
2
k=1,k 6=i Nk).

Suppose that we have a sequence of training matrices defined as
Mtrain which do not contain any sparse information and are used for
the initial estimate of the subspace in which each mode of Lt lies
in. Mtrain ∈ RN1×N2×ttrain can be considered as a 3-way tensor and
its full Tucker decomposition [33], [34] is

Mtrain = C ×1 P(1)
0 ×2 P(2)

0 ×3 P(3)
0 (4)

where P(1)
0 , P(2)

0 and P(3)
0 are the basis matrices along each mode with

P(i)
0 ∈ RNi×Ni . Let P̂(i)

0 s be the truncated version of P(i)
0 s by keeping

the columns with the singular values higher than σmin. P̂(i)
0 ∈R

Ni×r(i)0 s
where i∈ {1, 2} give the initial subspace information for Lt and r(i)0
is the rank of P̂(i)

0 . The goal is to estimate Lt and St for each t >
ttrain by recursively updating P(i)

t s. The Lt ’s are assumed to satisfy
a slowly changing low-rank subspace model which will be detailed
in section III-B.

Let Pt be the set of projection matrices which form the basis for
the subspaces in which each mode of Lt lies in Pt = {P

(1)
t ,P(2)

t }.
Assume Pt has been accurately predicted using past estimates of Lt

and we have P̂(i)
t−1’s with small

∣∣∣∣∣∣(I− P̂(i)
t−1(P̂

(i)
t−1)

>
)

P(i)
t

∣∣∣∣∣∣
2
. Then

Mt is projected to the space orthogonal to P̂t−1 defined through the

projection operators φφφ
(i)
t = I− P̂(i)

t−1(P̂
(i)
t−1)

> to obtain Yt as Yt =

Mt ×1 φφφ
(1)
t ×2 φφφ

(2)
t , which can be rewritten as:

Yt = (Lt +St)×1 φφφ
(1)
t ×2 φφφ

(2)
t ,

Yt = βt +St ×1 φφφ
(1)
t ×2 φφφ

(2)
t ,

(5)

where βt = Lt ×1 φφφ
(1)
t ×2 φφφ

(2)
t . Since ‖ φφφ

(i)
t P(i)

t ‖2 is small, the
projection of Lt to φφφ

(i)
t s will yield small ‖ βt ‖F (see Appendix A).

Notice that, although the projection matrices φφφ
(i)
t ’s are of size Ni×Ni,

they have rank Ni− rank(P̂(i)
t ). Therefore, obtaining St from Yt can

be represented as sparse recovery problem in small noise. Since P̂(i)
t ’s

are dense and restricted isometry constants (RIC) of measurement
matrices (φφφ (i)

t ) are small [26], we can accurately recover St from
Yt . To recover St from Yt , we apply serial recovery procedure for
compressed matrices presented in [35] and rewieved in Section II-B.
Once Ŝt is recovered, Lt can be estimated as L̂t = Mt − Ŝt .

Algorithm 1 Recursive Projected Compressive Sensing for Matrices

1: Input: Mt , P̂(i)
0 s

2: Output: L̂t , Ŝt
3: for t > 0 do
4: for i=1:2 do
5: φφφ

(i)
t = I− P̂(i)

t−1(P̂
(i)
t−1)

>

6: end for
7: Yt = Mt ×1 φφφ

(1)
t ×2 φφφ

(2)
t

8: Recover Ŝt from Yt by using CSM-S algorithm.
9: Estimate L̂t ←Mt − Ŝt

10: if mod(t− t̂ j +1,α) = 0 then
11: for i=1:2 do
12: D(i) =

[
L̂(i)

t j+(k−1)α · · · L̂
(i)
t j+kα−1

]
13: P̂(i)

(t) = deleteDirection(D, P̂(i)
(t−1))

14: P̂(i)
(t) = addDirection(D, P̂(i)

(t))

15: end for
16: if P̂(1)

(t) 6= P̂(1)
(t−1) or P̂(2)

(t) 6= P̂(2)
(t−1) then

17: j← j+1, t̂ j← t
18: P̂(1)

( j) ← P̂(1)
(t) , P̂(2)

( j) ← P̂(2)
(t)

19: end if
20: else
21: P̂(1)

(t) ← P̂(1)
(t−1), P̂(2)

(t) ← P̂(2)
(t−1)

22: end if
23: end for

B. Slowly Changing Subspace & Change Points

The following assumptions are made to define slowly changing
subspace along each mode of the tensor:
1. Let t j denote the change points of the low-dimensional subspaces
that L(i)

t s are in. Note that the subspaces along each mode can vary
independently from the others and as such t js are the collection of
all change points across modes. Assume that for τ large enough, any
τ length subsequence of L(i)

t s lies in low-dimensional subspaces, i.e.
maxtrank(

[
L(i)

t−τ+1...L
(i)
t

]
�min(τ,Ni,∏

2
k=1,k 6=i Nk).

2. Lt lies in a low dimensional subspace that changes slowly
along each mode i.e. Lt = At ×1 P(1)

t ×2 P(2)
t with P(i)

t = P(i)
j

for all t j ≤ t ≤ t j+1, j = 1,2, ...J where J is the maximum
number of change points. P(i)

j is an Ni × r(i)j basis matrix where

r(i)j � min(Ni,∏
2
k=1,k 6=i Nk).

3. At the change points, t j, at least one of the P(i)
j ’s
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changes as P(i)
j =

[
P(i)

j−1P(i)
j,add

]
, P(i)

j =
[
P(i)

j−1\P
(i)
j,del

]
or

P(i)
j =

[
(P(i)

j−1\P
(i)
j,del),P

(i)
j,add

]
where P(i)

j,add is a Ni × c(i)j,add

basis matrix with (P(i)
j,add)

>P(i)
j−1 = 0, i.e., the new directions added

to the projection matrix are orthogonal to the previous directions
and P(i)

j,del is a Ni× c(i)j,del matrix of deleted basis columns.

4. There exists constants c(i)max such that 0 ≤ c(i)j,add ≤ c(i)max < r(i)0 .

0 ≤ ∑
j
i=1(ci,add − ci,del) ≤ c(i)di f is required to imply

r(i)t ≤ r(i)0 + c(i)di f := r(i)max. The number of change points

J � mini

(
(Ni− r(i)0 − c(i)di f )/c(i)max

)
, so r(i)max + Jc(i)max � Ni.

Moreover, (∏2
k 6=i,k=1 Nk)(t j+1 − t j) � r(i)0 + c(i)di f helps to ensure

maxtrank(
[
L(i)

t−τ+1...L
(i)
t

]
�min(τ,Ni,∏

2
k=1,k 6=i Nk).

5. The projection of Lt along the new added directions,
At,add = Lt ×1 P>,(1)j,add ×2 P>,(2)j,add is initially small, i.e
maxt j≤t≤t j+α

‖ At,add ‖∞≤ γadd and γadd � min(‖Lt ‖F , ‖St ‖F ),
but can increase gradually.

In order to enable a more efficient online implementation, the low-
rank subspaces P(i)

t s are estimated and updated every α samples,
where α is selected empirically. Similar to the projection PCA (p-
PCA) procedure used in [27], mode-i unfoldings L̂(i)

t ’s of the last
α L̂t ’s are concatenated as D(i) =

[
L̂(i)

t j+(k−1)α · · · L̂
(i)
t j+kα−1

]
with

k ∈ {1, 2, ..., K} where K is the maximum number of length α

windows and D(i)s are projected onto subspaces which are orthogonal
to P̂(i)

( j−1)s as follows: D(i)
pro j = (I− P̂(i)

( j−1)(P̂
(i)
( j−1))

>)D(i). Then PCA

is applied to find the subspace which spans D(i)
pro j. Let P(i)

j,add be
the truncated basis that spans this subspace obtained by keeping the
eigenvectors with eigenvalues greater than σmin. P(i)

j,add and previous

subspace estimate P̂(i)
( j−1) together yields new subspace estimate as:

P̂(i)
( j) = [P̂(i)

( j−1))P
(i)
j,add ]. During the update step, some of the existing

directions can also be deleted from the projection matrix by finding
the ones with eigenvalues lower than σmin (see Algorithms 2 and 3).
If there is any added or deleted directions, it means that there is a
change point.

C. Computational Complexity

Let the two way tensor Mt be of size N × N. For the time
points which do not require subspace update, computational com-
plexity of the proposed approach is equivalent the complexity of l1
regularization multiplied by the total number of rows and columns
to obtain the sparse component St and is 2N ·O(N3) = 2 ·O(N4).
However, if we use REPROCS after vectorizing the data, complexity
for the same operations become O((N2)3) = O(N6). For the time
points which require basis update, there is an additional cost of
covariance matrix computation and eigenvalue decomposition. For
the proposed approach, covariance matrix computations for the two
modes have a complexity of 2 ·O((αN) ·N2) = 2 ·O(αN3) opera-
tions whereas eigenvalue decompositions cost 2 ·O(N3). However,
REPROCS requires O(α(N2)2) = O(αN4) operations for covariance
matrix computation and O((N2)3) =O(N6) operations for eigenvalue
decomposition. Therefore, proposed approach is computationally
more efficient than applying REPROCS to vectorized data.

IV. RESULTS

A. Simulated Data

The proposed framework is first applied to simulated dynamic
weighted and directed networks Xt ∈ R64×64 for t ∈ {1, 2, ..., 60}
which are generated 100 times. Initially, the networks contain 2 equal
size modules. After t = 20, one of the modules is slowly divided into

two smaller modules of size 16 nodes each. Intra-cluster edge values
were selected from N(0.4, 0.1) and truncated to the interval [0,1]
while the inter-cluster edge values were selected from N(0.1, 0.1).
Moreover, these networks were corrupted by a sparse noise matrix
Et which is 5% sparse and ei, j ∼ beta(3,2). Proposed algorithm is
applied with α = 4 and σmin = 0.13. The same algorithm is also
applied without sparse recovery step similar to standard PCA. Mean
squared error for the recovered low-rank components were computed
for both algorithms at each time point (Fig. 1). It can be seen that the
proposed approach provides better tracking and better approximation
for the low-rank component. It can also be seen that, MSE computed
for the proposed algorithm increases after the change point and then
decreases after subspace update.

time points
0 10 20 30 40 50 60

M
S

E

0.008

0.01

0.012

0.014

0.016

Fig. 1: MSE computed for low-rank components obtained by the
proposed approach (blue) and simple subspace tracking algorithm
(red).

B. Reality Mining Dataset

This dataset was collected at MIT Media Laboratory and contains
bluetooth interaction of 94 mobile phone users from September 2004
to June 2005 [36]. The participants are categorized as follows: 36 are
graduate students who are not in their first year (nodes 1-36), 15 are
first year graduate students (nodes 37-51), 6 are staff members (nodes
52-57), 3 are undergraduate students (58,63,66), 6 are freshman
(nodes 59-62, 64, 65), one is a professor (node 94) in Media Lab
and 27 are students from Sloan Business School (nodes 67-93).

Dynamic 2-way tensor Xt ∈ R91×91 is constructed at each time
point t ∈ {1, 2, ..., 46}. The first 6 time points which correspond
to the time before the Fall term were discarded due to absence of
enough data and the networks for the next 4 time points were used
for training. The proposed algorithm was applied to the dynamic
tensor Xt with α = 3 and σmin = 0.1 where t ∈ {11, 12, ..., 46}.
As seen in Fig. 2, the detected change points follow the time points
corresponding to the end of the Fall term, the start of the Spring term
and the end of the Spring term respectively. Moreover, average of the
obtained low rank components were computed for each time period
(see Fig. 3). Two dominant clusters which correspond to graduate
students, and students from Sloan Business School were observed in
the low-rank matrices. The nodes corresponding to Sloan Business
School are not very active in the low-rank matrices after the first
change point. It can also be seen that most of the nodes are inactive
during winter and summer breaks.

V. CONCLUSIONS

In this paper, we introduced a new recursive projection based tensor
subspace tracking approach to identify changes in dynamic networks.
Unlike other tensor subspace learning approaches, we adapted RE-
PROCS to track tensor subspace and decompose the tensor into low-
rank and sparse components. The proposed framework is evaluated by
applying it to simulated and real networks. Future work will consider
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Fig. 2: Detected change points (blue stripes) for Reality Mining
Dataset.
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Fig. 3: Average of the low-rank components within each detected
time interval on Reality Mining Dataset.

extending the proposed approach to higher order tensors such as
dynamic functional connectivity networks of the brain formed across
subjects.

VI. APPENDIX

A. βt is Small

In this section, we will prove that βt is small and that eqn
(5) can be treated as a sparse recovery in noise problem. Define
the subspace estimation error for ith mode as SE(P(i), P̂(i)) :=‖
(I− P̂(i)P̂>,(i))P(i) ‖F= εi, where P(i) and P̂(i) are true and estimated
basis matrices of the ith mode, respectively. Lt can be written as

Lt = A1×1 P(1)
j−1×2 P(2)

j−1 +A2×1 P(1)
j,add ×2 P(2)

j−1

+A3×1 P(1)
j−1×2 P(2)

j,add +A4×1 P(1)
j,add ×2 P(2)

j,add ,
(6)

where we redefine the old and new parts of the projection as

At,∗ = A1 = Lt ×1 P>,(1)j−1 ×2 P>,(2)j−1

A2 = Lt ×1 P>,(1)j,add ×2 P>,(2)j−1

A3 = Lt ×1 P>,(1)j−1 ×2 P>,(2)j,add

At,add = A4 = Lt ×1 P>,(1)j,add ×2 P>,(2)j,add .

(7)

Assumptions:

1) Subspace estimation error εi =‖ (I− P̂(i), P̂>,(i))P(i) ‖F≤ r(i)0 ζ

for ζ � 1.
2) Let l(i)k be the kth column of Lt,(i) and assume that ‖ l(i)k ‖F≤

γ
(i)
∗ , γ

(i)
∗ ≤ 1√

ζ r(i)J

and γ
(i)
add << γ

(i)
∗

3) Assume that ‖ Lt ‖F≤ γ∗ where γ∗ =

mini∈{1, 2}

(
γ
(i)
∗
√

∏
2
k=1,k 6=i Nk

)
.

4) Assume that γadd = mini∈{1, 2}

(
γ
(i)
add

√
∏

2
k=1,k 6=i Nk

)
and

γadd � γ∗ .
The norm of βt is:

‖ βt ‖F= ‖Lt ×1 φφφ
(1)
t ×2 φφφ

(2)
t ‖F

≤ ε1ε2||At,∗||F + ε2||A2||F + ε1||A3||F + ||At,add ||F
(8)

and,

‖At,2 ‖F= ‖Lt ×1 P>,(1)j,add ×2 P>,(2)j−1 ‖F

= ‖ P>,(1)j,addLt,(1)P
(2)
j−1 ‖F

≤ ‖ P>,(1)j,add ‖F · ‖ Lt,(1) ‖F · ‖ P(2)
j−1 ‖F

= γ∗

√
r(1)j,addr(2)j−1.

(9)

Similarly, ‖At,3 ‖F≤ γ∗

√
r(1)j−1r(2)j,add .

Let N̄ = maxi(Ni), r̄J = maxi(r
(i)
J ) and γ̄∗ = maxi(γ

(i)
∗ ) · N̄. Assume

that γ̄add = maxk(γ
(k)
add) and γ̄add � γ̄∗.

Therefore;

‖ βt ‖F≤ N̄ ·ζ 3/2 · (r̄ j−1)+2 · N̄ ·ζ 1/2 ·
√

r̄ j−1r̄ j,add + N̄ · γ̄add .

‖ βt ‖F≤ N̄ ·ζ 1/2 · γ̄(−2)
∗ +2 · N̄ · γ̄(−1)

∗ · (r̄ j,new)
1/2 + N̄ · γ̄add .

(10)
Since ζ is small and γ̄∗ is large, the last term is dominant in

the upper bound. Thus, βt can be considered as noise by the slow
subspace change assumption ‖ γadd ‖F�‖St ‖F .

B. Algorithms

Algorithm 2 deleteDirection

1: Input: D: data, P: input basis matrix
2: Output: Q: output basis matrix

3: λ =
1
m

diag((P′D(P′D)>)) where m is the number of colums of
D.

4: i= find(diag(λ )< σmin)
5: Q = [P\P(i, :)]

Algorithm 3 addDirection

1: Input: D: data, P: input basis matrix
2: Output: Q: output basis matrix
3: Projection: Projection: compute Dpro j← (I−PP′)D
4: PCA: compute 1

m Dpro jD′pro j =UλU ′ where m is the number of
columns in D.

5: i= find(diag(λ )> σmin)
6: Q = [P U(i, :)]
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