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ABSTRACT

The low-rank matrix recovery problem consists of recon-
structing an unknown low-rank matrix from a few linear
measurements, possibly corrupted by noise. One of the most
popular method in low-rank matrix recovery is based on
nuclear-norm minimization, which seeks to simultaneously
estimate the most significant singular values of the target
low-rank matrix by adding a penalizing term on its nuclear
norm. In this paper, we introduce a new method that re-
quires substantially fewer measurements needed for exact
matrix recovery compared to nuclear norm minimization.
The proposed optimization program utilizes a sparsity pro-
moting regularization in the form of the entropy function of
the singular values. Numerical experiments on synthetic and
real data demonstrates that the proposed method outperforms
stage-of-the-art nuclear norm minimization algorithms.

Index Terms— low-rank matrix recovery, matrix comple-
tion, entropy, iteratively reweighted nuclear norm minimiza-
tion.

1. INTRODUCTION

In a low-rank matrix recovery problem, an unknown matrix
X ∈ Rn1×n2 with rank(X) = r � min{n1, n2} is mea-
sured via a linear mapping A : Rn1×n2 → Rm, resulting in
an observation vector y = A(X). The goal is to recover the
low-rank matrix X based on the measurements (A,y). This
problem has found numerous applications in various fields
such as face recognition [1][2], recommender systems [3],
computational biology [4], and linear system identification/
control [5].

A natural way to recover a low-rank matrix X from its
linear measurements is to solve the linearly constrained rank
minimization problem

min
X

rank(X) s.t. A(X) = y. (1)

However, this problem is known to be NP-hard. Instead
of solving (1) directly, one is often interested in a tractable
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method which minimizes a surrogate of the rank function. Let
σ(X) = (σ1(X), ..., σn(X)) be the vector of singular val-
ues of X , where σ1(X) ≥ ... ≥ σn(X) ≥ 0 are its singular
values, and n = min{n1, n2}, then rank(X) = ‖σ(X)‖0.
Here, ‖σ(X)‖0 counts the number of nonzero elements of
σ(X). Therefore, a natural relaxation of (1) is to replace the
rank function by a sparsity promoting function of the singu-
lar value vector. Most of previous works have focused on
methods that penalize ‖σ(X)‖1 which is defined as the sum
of the singular values of X . Specifically, a recent heuristic
introduced in [6] minimizes this convex surrogate of the rank
function over the linear constraints, resulting in the nuclear
norm minimization (NNM) problem

min
X
‖X‖∗ s.t. A(X) = y, (2)

where ‖X‖∗ =
∑
i σi(X) = ‖σ(X)‖1 is the nuclear norm

of X . Candès et. al. [7] has shown that under certain inco-
herence conditions on the singular values of the target matrix,
solving this convex optimization problem results to a near op-
timal low-rank solution. However, this assumption may be
violated in many practical applications, leading to the sub-
optimality of the solution of NNM.

In this paper, we propose an alternative approximation to
the rank function than nuclear norm. In particular, we intro-
duce the entropy function h : Rn → R+ which is defined
as

h(x) = −
∑
i

|xi|
‖x‖1

log
|xi|
‖x‖1

, (3)

where x ∈ Rn. We adopt the convention that 0 log 0 = 0 and
h(0) = 0. To recover a low-rank matrix X from its linear
measurements, we solve the following ENtropy Minimization
(ENM) problem

min
X

h(σ(X)) s.t. A(X) = y. (4)

In the next section, we argue that minimizing the entropy
function leads to the sparsity of the singular value vector of
the solution. This implies that solving (5) results in a low-
rank solution. In Section 3, we show that this nonconvex
optimization problem can be solved efficiently by an itera-
tively reweighted nuclear norm minimization (IRNN) proce-
dure. Finally, numerical results on synthetic and real im-
age data are presented in Section 4 demonstrating that the
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proposed method outperforms state-of-the-art algorithms for
solving the nuclear norm minimization problem.

2. ENTROPY MINIMIZATION AND LOW-RANK
MATRIX RECOVERY

We show in this section that solving (5) produces a low-rank
solution by first arguing that the entropy function promotes
sparsity.

Given a nonzero vector x ∈ Rn, let X be a discrete ran-
dom variable with possible values {1, ..., n}. Define P (X =

i) = |xi|
‖x‖1 , then { |x1|

‖x‖1 , ...,
|xn|
‖x‖1 } is the distribution of X and

H(X) = h(x). Here H(X) is the Shannon entropy of the
random variable X . Information theory ”implies” that the en-
tropy of this random variable is maximized when its distribu-
tion is uniform. On the other hand, making the distribution of
X skewing towards a few of its values significantly decreases
the entropy. This is equivalent to making x more sparse.

To illustrate this point, consider a nonzero vector x ∈ R2,
and define the binary random variable X as above. The shape
of H(X) is plotted in Figure 1(a). This is in fact the well-
known binary entropy function. It can be seen that h(x) =
H(X) attains its maximum when x1 = x2 whereas its min-
ima occur when x is 1 sparse, i.e., either x1 or x2 is zero.

P (X = 1) = |x1|
‖x‖1

H
(X

)
=

h
(x
)
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Fig. 1. (a) Binary entropy function. (b) Illustration of Lemma
1: minimum entropy occurs at 1-sparse solutions.

We now turn to our problem of interest. Given the linear
measurements (A,y) of a low-rank matrix X , to recover X ,
we propose to solve

min
X

h(σ(X)) s.t. A(X) = y. (5)

For the sake of illustration, consider the case that X is a
nonnegative diagonal matrix, and let x = diag(X) so that
x = σ(X). We assume that x is sparse. Note that (5) now
reduces to a Compressed Sensing problem. We thus consider
the following equivalent problem

min
x

h(x) s.t. Ax = b, (6)

for some sensing matrix A ∈ Rm×n, m < n and measure-
ment vector b ∈ Rm. The sparsity promoting property of the
entropy function leads to sparse minimizers of (6), as shown
in the following lemma.

Lemma 1. Let A ∈ Rm×n, m < n, be a sampling matrix.
Assume that the optimal solution x∗ of (6) is unique, then
‖x∗‖0 ≤ m.

The implication of this lemma is that the entropy func-
tion has a tendency to prefer sparse solutions. As a conse-
quence, solving (5) produces a low-rank solution whose sin-
gular value vector is sparse. This lemma can be proved by
way of contradiction. In particular, one can assume that x∗

has more than m nonzero elements. Consequently, there is
some nontrivial vector h in the null space of A that is sup-
ported on the support of x∗. Then one can construct a sparser
solution with smaller entropy by carefully nullifying some el-
ements of x∗. This procedure is illustrated in Figure 1(b).

3. ENTROPY-MINIMIZATION ALGORITHMS

In practice, measurements are often concatenated by noise.
We thus solve the following robust variant of (5)

min
X

λh(σ(X)) + f(X;A,y), (7)

for some loss function f : Rn1×n2 → R+ with Lipchitz con-
tinuous gradient. We will show later in Section 4 that solving
(7) leads to a better estimate of the target low-rank matrix
compared to NNM. The trade-off is that this optimization is
nonconvex. To solve (7), we use a linearization technique
which replaces both the two terms of the objective function
by their affine approximations. Our procedure is similar to
that in [8]. However, it is important to note that (7) is not
the same as the nonconvex nonsmooth low-rank minimiza-
tion problems solved in [8] since h(·) is not separable in its
parameters.

In a simplified setting, we denote σ = σ(X), σt =
σ(Xt), and f(X) = f(X;A,y). As h(σ) ≈ h(σt) +
∇h(σt)T (σ − σt), we thus can obtain the solution at iter-
ation t + 1 based on the solution at iteration t by solving the
relaxed problem

Xt+1 = argmin
X

λ∇h(σt)Tσ + f(X) (8)

= argmin
X

λ
∑
i

wtiσi + f(X),

where wti = ∂h(σ)
∂σi
|σ=σt . The following lemma gives the

form of the weights used in this weighted nuclear norm mini-
mization problem.

Lemma 2. Let h be the entropy function defined in (3), and
let σ be a positive vector, then

∂h(σ)

∂σi
= − log σi

‖σ‖1
+

∑
j σj log σj

‖σ‖21
. (9)

As a consequence,

wti = − log σti
‖σt‖1

+

∑
j σ

t
j log σtj

‖σt‖21
, (10)
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for σti > 0. In case σti = 0, we letwti = +∞. As stated in [8],
the above weighted nuclear norm minimization is much more
challenging to solve than the weighted `1 norm minimization
[9] as the weighted nuclear norm is nonconvex. To overcome
this difficulty, we next linearize the loss function f(X) and
add a proximal term:

f(X) ≈ f(Xt) +∇f(Xt)T (X −Xt) +
ρ

2
‖X −Xt‖2F ,

(11)
where ρ > Lf and Lf is the Lipschitz constant of∇f . There-
fore, we can updateXt+1 by solving the relaxed problem

Xt+1 = argmin
X

λ
∑
i

wtiσi + f(Xt) (12)

+∇f(Xt)T (X −Xt) +
ρ

2
‖X −Xt‖2F

= argmin
X

λ
∑
i

wtiσi +
ρ

2

∥∥∥∥X − (Xt − 1

ρ
∇f(Xt)

)∥∥∥∥2

F

.

Although this problem is nonconvex, it has a closed form
solution due to the following property of the weights wti’s.

Lemma 3. If σt1 ≥ σt2 ≥ ... ≥ σtn ≥ 0, then 0 ≤ wt1 ≤ wt2 ≤
... ≤ wtn.

We can now obtain the closed form solution of (12) based on
this property of the weights.

Lemma 4. [8][10] Let λ > 0, X ∈ Rn1×n2 , and 0 ≤ w1 ≤
w2 ≤ ... ≤ wn, where n = min{n1, n2}. Let X∗ be the
optimal solution of the minimization problem

min
X

λ
∑
i

wiσi(X) +
1

2
‖X −Z‖2F , (13)

then

X∗ = UDλw(Σ)V T , (14)

where Z = UΣV T and Dλw(Σ) = diag{(σi − λwi)+} is
the singular value shrinkage operator [11].

The main steps of the algorithm is summarized in Algo-
rithm 1.

Algorithm 1 Entropy-Minimization
input: measurements (A,y), λ > 0, and ρ > Lf .
initialization: X0.
while not converged do

Update the weights:

wti = − log σti
‖σt‖1

+

∑
j σ

t
j log σtj

‖σt‖21
, i = 1, ..., n (15)

Update the estimate:

Xt+1 = UD(λ/ρ)w(Σ)V T , (16)

whereXt − 1
ρ∇f(Xt) = UΣV T .

end while
output: Estimated solution X̂ .

Discussion: Our proposed algorithm for solving the ENM
problem is in fact an iteratively reweighted nuclear norm min-
imization algorithm. It is therefore an improvement of NNM
that it more democratically penalizes nonzero singular values.
Specifically, Lemma 3 implies that the insignificant singular
values at each iteration have larger weights during the sub-
sequent iterations, which would eventually vanish after the
algorithm terminates. As a result, the obtained solutions are
often have lower ranks comparing to NNM. Finally, in prac-
tice, ENM tends to encourage the singular values of X to have
a Laplacian distribution.

4. NUMERICAL RESULTS

This section shows various experiments on both synthetic
data and real image data to illustrate the effectiveness of the
proposed algorithm. We perform experiments for the matrix
completion problem

min
X

rank(X) s.t. Xij = Mij , (i, j) ∈ Ω (17)

where X is the target matrix and Ω is the index set of the
observed entries. This problem is a special case of the linearly
constrained low-rank matrix recovery problem (1) where A
is a random subsampling operator. In all experiments, we
choose the Frobenius norm as the loss function and initialize
X0 by Singular Value Thresholding (SVT) [11].

4.1. Synthetic data

In this subsection, we compare the exact recovery ability of
our ENM algorithm with that of SVT [11] and Augmented
Lagrange Multiplier (ALM) [12] algorithms on synthetic
data. These algorithms solves the NNM problem for matrix
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completion:

min
X
‖X‖∗ s.t. Xij = Mij , (i, j) ∈ Ω (18)

We used the implementations of these algorithms provided on
the authors websites 1.

We fixed the size of the target matrix as n1 = 100 and
n2 = 100, and the number of measurements asm = 0.5n1n2.
Exact recovery ability of various algorithms is benchmarked
against against various numbers of rank r of the target ma-
trix. For each r, the experiment was repeated 100 times. Each
time, we first sample two matrices M1 ∈ Rn1×r and M2 ∈
Rn2×r with i.i.d. Gaussian entries, and set M = M1.M

T
2 .

We then sample a subset Ω of m entries uniformly at random.
For both SVT and ALM, we used the default parameters in
the publicly released code. To evaluate the obtained solutions,
we use the Relative Error defined as ‖X̂−M‖

2
F

‖M‖2F
, where X̂ is

the recovered solution employed to evaluate recovery perfor-
mance. In our experiments, a target matrix is successfully
recovered if the Relative Error is less than 10−3. The proba-
bility of exact recovery is plotted in Figure 2. It can be seen
that our algorithm outperforms SVT and ALM in the sense
that it requires significantly less samples to recovery a low-
rank matrix comparing to other popular algorithms.
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Fig. 2. Probability of exact recovery on synthetic data.

4.2. Image recovery

We now validate the performance of the proposed algorithm
on real image recovery problem. The chosen image is the
MIT logo which is of size 38× 73 and approximately of rank
5 with 5 dominant singular values. Figure 3 shows the gray
scale MIT logo image and its singular values. We compare
our algorithm with the Accelerated Proximal Gradient with
Line search (APGL) algorithm [13] which solves the follow-
ing NNM problem for matrix completion

min
X

λ‖X‖∗ +
1

2
‖PΩ(X −M)‖2F , (19)

1http://www.perception.csl.illinois.edu/matrix-rank/sample code.html

where PΩ is a linear operator such that the (i, j)th component
of PΩ(X) is equal to Xij if (i, j) ∈ Ω and zero otherwise.
In our experiments, only a subset of entries of the target im-
age, chosen uniformly at random, is observed. We varied the
number of observed elements. For each number of random
samples, the experiment is repeated 1000 times. We use the
Relative Error defined in the previous subsection to evaluate
the performance of the algorithms. The Relative Error curves
are shown in Figure 4. We can see that the ENM algorithm
performs much better than APGL.

Fig. 3. MIT logo image and its singular values.
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Fig. 4. Low-rank matrix completion on MIT logo.

5. CONCLUSIONS

In this paper, we propose the Entropy-Minimization program
for solving low-rank matrix recovery problems. The proposed
method minimizes the entropy function of the singular val-
ues of the target matrix. We show that minimizers of this
program are low-rank and provide a better approximation to
original matrices compared to NNM. Moreover, our proposed
Entropy-Minimization algorithm can be solved efficiently by
an iterative reweighted nuclear norm minimization algorithm.
Numerical experiments on both synthetic and real image data
demonstrated the superior of the proposed method to state-of-
the-art algorithms for solving NNM.
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