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ABSTRACT

We present a novel algorithm, named the 2D-FFAST (Two-
dimensional Fast Fourier Aliasing-based Sparse Transform),
to compute a sparse 2D-Discrete Fourier Transform (2D-
DFT) featuring both low sample and computational complex-
ity. The proposed algorithm is based on diverse concepts from
signal processing (sub-sampling and aliasing), coding theory
(sparse-graph codes) and number theory (Chinese-remainder-
theorem) and generalizes the 1D-FFAST algorithm recently
proposed by Pawar and Ramchandran [1, 2] to the 2D setting.
Concretely, our proposed 2D-FFAST algorithm computes a
k-sparse 2D-DFT, with a uniformly random support, of size
N = Nx×Ny usingO(k) noiseless spatial-domain measure-
ments in O(k log k) computational time. Our results are at-
tractive when the sparsity is sub-linear with respect to the sig-
nal dimension, that is, when k → ∞ and k/N → 0. For the
case when the spatial-domain measurements are corrupted by
additive noise, our 2D-FFAST framework extends to a noise-
robust version of computing a 2D-DFT using O(k log3N)
measurements in sub-linear time of O(k log4N). Empiri-
cally, we show that the 2D-FFAST can compute a k = 3509
sparse 2D-DFT of a 508 × 508-size phantom image using
only 4.75k measurements. We also empirically evaluate the
2D-FFAST algorithm on a real-world magnetic resonance
brain image using a total of 60.18% of Fourier measurements
to provide an almost instant reconstruction with SNR=4.5
dB. This provides empirical evidence that the 2D-FFAST ar-
chitecture is applicable to a wider class of input signals than
analyzed theoretically in the paper.

Index Terms— Sparse graph code, Compressed sensing,
Multi-dimensional Signal Processing, Fast Fourier Transform

1. INTRODUCTION

In many imaging applications, such as magnetic resonance
angiography, computed tomography, and astronomical imag-
ing, the image of interest has a sparse representation in the
Fourier domain. Recent results in compressed sensing [3, 4]
exploit this sparse structure to acquire and reconstruct signals
from far fewer measurements than required by the Shannon-
Nyquist theorem. However, the most popular class of com-
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pressed sensing based reconstruction algorithms involves iter-
atively alternating between the spatial domain representation
and the Fourier domain representation of the signals, and con-
sequently are computationally expensive. Hence, such algo-
rithms have limited scope in devices and acquisition devices
and systems demanding inexpensive, low-power or real-time
signal analysis.

While many algorithms with low computational complex-
ity [5, 6, 7, 8, 9, 10, 11, 12] have been proposed to compute
a sparse 1D discrete-Fourier-transform (DFT), extensions of
these algorithms to 2D sparse signals, with recovery guaran-
tees similar to 1D, can be non-trivial, and very few 2D algo-
rithms [12, 13] were proposed. Yet multidimensional signals,
such as images and videos, often have much sparser represen-
tations than 1D signals, and can arguably be found in a wider
range of signal processing applications. Hence, a practical al-
gorithm with both low computational and sample complexity
for computing a sparse 2D-DFT is of great interest.

In this work, we present an algorithm, named the 2D-
FFAST (Two-dimensional Fast Fourier Aliasing-based Sparse
Transform), to compute a sparse 2D-DFT featuring both low
sample and computational complexity. While a 2D-DFT can
be uniquely mapped to a 1D-DFT when the dimensions are
co-prime, our main contribution is the design of the 2D-
FFAST algorithm for a wide class of 2D signals as described
in Section 2, whose 2D-DFT computation cannot be mapped
to 1D-DFT. In particular, we show that the 1D-FFAST archi-
tecture proposed in Pawar and Ramchandran [1] can be lifted
to the 2D setting as shown in Section 4, and show how the
recovery guarantees can be preserved.
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Fig. 1. A simplified visual illustration of how the 2D-FFAST algorithm
computes a 2D sparse DFT.

4059978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



At a high level, our 2D FFAST algorithm induces sparse
graph codes in the 2D-DFT domain via a Chinese-Remainder-
Theorem (CRT)-guided 2D sub-sampling operation in the
spatial-domain. This insight can then be exploited to devise
a fast greedy onion-peeling style algorithm that computes the
2D-DFT. A simplified visual illustration of the 2D-FFAST
architecture is provided in Figure 1.

Before diving into the main results, we emphasize the fol-
lowing caveats of our algorithm and analysis: First, our pro-
posed 2D-FFAST algorithm does not apply to 2D signals with
arbitrary dimensions but applies to a large set of 2D signals,
whose dimensions satisfy certain conditions, as described in
Section 2. Secondly, our analytical results are probabilistic
and hold for asymptotic values of k and signal dimensions
Nx×Ny , with a success probability that approaches 1 asymp-
totically. Thirdly, our analytical results assume a uniformly
random model for the support of the non-zero DFT coeffi-
cients. Lastly, for the noisy case, we assume that the non-zero
DFT coefficients belong to an arbitrarily large but finite con-
stellation such that the effective signal-to-noise ratio is finite
for analysis purpose.
Related work: A number of previous works [5, 6, 7, 8, 9, 10,
11, 1] have addressed the problem of computing a 1D-DFT of
an N -length signal that has a k-sparse Fourier transform, in
sub-linear time and sample complexity. Unlike the 1D-DFT,
there are few algorithms designed for a sparse 2D-DFT: The
algorithm in Gilbert et al. [6] achieves O(k logcN) sample
and time complexity for computing a k-sparse N = Nx ×
Ny 2D-DFT, for some constant c. In Ghazi et al. [13], the
algorithm achieves O(k) sample complexity and O(k log k)

computational complexity only when Nx = Ny =
√
N .

For the general sub-linear sparsity regime, the computational
complexity is O(k log k + k(log logN)c) for some constant
c. In addition, the algorithm succeeds only with a constant
probability that does not approach 1, which generally trans-
lates to inferior empirical results. In [12], Indyk et al. de-
scribe an algorithm achieving O(k logN) sample complexity
and O(N logcN) computational complexity for general sub-
linear sparsity k. In contrast, the proposed 2D-FFAST algo-
rithm, in the absence of any noise, computes a k-sparse 2D-
DFT using O(k) samples in O(k log k) computational com-
plexity, for any sub-linear sparsity k, with a probability of
success that approaches 1 asymptotically. In the case when
the signal is corrupted by noise, 2D-FFAST computes a 2D-
DFT using O(k log3N) measurements and in sub-linear time
of O(k log4N).

2. PROBLEM FORMULATION

We consider the problem of computing the 2D-DFT X from
the spatial-domain samples x, when the transform X is
known to be sparse. Specifically, we show that when X
has precisely k non-zero DFT coefficients with a uniformly
random support, one can achieve significant gains in both the
number of samples used and the computational complexity.

We assume that the sparsity k of the 2D-DFT of a signal
is sub-linear with respect to the signal dimension, that is k ∝
Nδ , whereN = Nx×Ny and 0 ≤ δ < 1. Our 2D-FFAST al-
gorithm further requires that the 2D signal dimension N can
be factorized into d approximately same order co-prime fac-
tors {Qi}d−1i=0 , where d is an appropriately chosen constant
(usually chosen as 3). For example, suppose we want to tar-
get a 2D DFT computation with dimension N = Nx × Ny
around 512 × 256 and sparsity k ≈ 2500 ≈ N2/3. Then
choosing d = 3, we have each factor Qi ≈ 50. Hence, we
can choose Q0 = 49,Qi = 50,Q2 = 51, and split the fac-
tors between Nx and Ny to obtain Nx = 51 × 10 = 510
and Ny = 5 × 49 = 245, which are close to the targeted
2D signal dimension. While the dimension assumption limits
the application to arbitrary 2D dimensions, this constraint is
flexible in practice as long as the user has reasonable control
on the signal dimension as shown in the previous example.
We also consider the case where the spatial-domain samples
are corrupted by additive Gaussian noise and assume that the
non-zero DFT coefficients belong to a finite constellation for
analysis purpose.

3. MAIN RESULT

Consider the signal model as stated in Section 2, our follow-
ing theorems state the main result:

Theorem 3.1. For any 0 ≤ δ < 1, and large enough N =
NxNy , the 2D-FFAST algorithm computes the k-sparse 2D-
DFT of anNx×Ny-size input x, where k = O(Nδ), with the
following properties:
1. Sample complexity: The algorithm needs m = O(k)

measurements
2. Computational complexity: The computational complex-

ity of the 2D-FFAST algorithm is O(m logm)
3. Probability of success: The probability that the algorithm

correctly computes the 2D-DFT X is at least 1−O(1/m)

Proof. For the case when Nx and Ny are co-prime, there ex-
ists a unique one-to-one mapping from 2D-DFT to a 1D-DFT
[14, 15]. For the general case, we show that there is a direct
correspondence between the sparse graph codes induced by
the 2D-FFAST architecture and the 1D-FFAST architecture.
Please see extended paper on arXiv [16] for detail.

Theorem 3.2. For a sufficiently high signal-to-noise-ratio,
any 0 ≤ δ < 1, and a large enough N = NxNy , the 2D-
FFAST algorithm computes the k-sparse 2D-DFT of an (Nx×
Ny)-size input x, where k = O(Nδ), with the following prop-
erties:
1. Sample complexity: The algorithm needsm = O(k log3(N))

measurements
2. Computational complexity: The computational complex-

ity of the 2D-FFAST algorithm is O(k log4(N))
3. Probability of success: The probability that the algorithm

correctly computes the 2D-DFT X is at least 1−O(1/m)

Proof. Please see extended paper on arXiv [16]
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4. 2D-FFAST ARCHITECTURE

Throughout this section, we will use a simple 2D example sig-
nal to describe the proposed 2D-FFAST architecture. Specif-
ically, we consider a 6× 6 2D signal x, such that its 2D-DFT
X is 4-sparse: X[1][3], X[2][0], X[2][3] and X[4][0].

Our 2D-FFAST architecture is built on the design prin-
ciples of 1D-FFAST in [1] and consists of a deterministic
sub-sampling front-end and an associated back-end peeling-
decoder algorithm. The 2D-FFAST front-end sub-samples the
input signal and its circularly shifted version through multi-
ple stages. In addition, each stage has multiple delay paths
and is parametrized by a single pair of sampling factors: one
for horizontal subsampling, the other one for vertical subsam-
pling. For example, the 2D-FFAST architecture of Fig. 2 has
2 stages and 3 delay (circular shift) paths per stage.

2D-DFT# (3, 3)

2D-DFT# (3, 3)

2D-DFT# (3, 3)

z(1,0)

z(0,1)

Matrix to!
bin!

observations!

2D-DFT

2D-DFT

2D-DFT

z(1,0)

z(0,1)

Matrix to!
bin!

observations!

stage-0

stage-1
# (2, 2)

# (2, 2)

# (2, 2)

X 2 C6⇥6

2D-DFT
2D-FFAST

Peeling
Decoder

x
FFAST front-end back-end

FFAST( (

Fig. 2. A 2D-FFAST architecture of d = 2 stages. Each stage further
has 3 delay chains and a common sub-sampling factor. Bin-observations are
formed by collecting one scalar output from each of the 3 delay chains, which
are further processed by a ‘peeling-decoder’ to reconstruct X

4.1. Front-end: 2D-subsampling and delays

As shown in Figure 2, our 2D-FFAST front-end takes in
a 2D signal x and outputs bin observations. A bin obser-
vation is simply a vector formed by collecting the scalar
outputs from each of the delay chains in a stage of the 2D-
FFAST front-end. The bin observations, in the terms of
the non-zero DFT coefficients x of the signal, can be com-
puted using the basic signal processing identities of aliasing
and circular shifts. For our example signal, the bin ob-
servation vector of bin 1 in stage 0 is given by ~yb,0,1 =

(X[2][3], e2πı2/6X[2][3], e2πı3/6X[2][3])>.
A key observation of the 2D-FFAST is that the relation

between the unknown non-zero DFT coefficients of the sig-
nal and the output bin observations can be represented as a
bi-partite graph as shown in Fig. 3. The left nodes in the
graph represent the non-zero 2D-DFT coefficients and the
right nodes represent the bins with vector observations. A
bin is called a zeroton if it has no left neighbor in the graph.
A singleton bin has exactly one left neighbor and a multiton
bin has more than one neighbor on left in the graph.
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Fig. 3. A bi-partite graph representing the relation between the bin-
observations and the non-zero 2D-DFT coefficients X for our 6×6 example.

4.2. Back-end: 2D-FFAST peeling-decoder

Given the bin observations, we would like to recover the non-
zero 2D-DFT coefficients. Now, suppose a “genie” informs
the decoder which bins in the graph are zerotons, single-
tons, and multitons along with the locations and values of the
connected DFT coefficients for singletons. Then, effectively
we have access to the bi-partite graph and our 2D-FFAST
peeling-decoder repeats the following steps:

1. Select all the edges in the graph with right degree 1.
2. Remove these edges from the graph as well as the associ-

ated left and right nodes.
3. Remove all edges connected to the left nodes removed in

step-2. When an edge is removed, its contribution is sub-
tracted from the connected bin.

Decoding is successful if all the edges from the graph have
been removed in the end. In [1, 16], we have shown that if
the 2D sub-sampling factors are carefully chosen following
the Chinese-Remainder-Theorem (CRT), the induced bipar-
tite graph is such that the 2D-FFAST peeling-decoder suc-
ceeds with probability approaching 1, asymptotically in k.

To replace the “genie”, we make the following important
observation: if a bin is a singleton, then the phases of the bin
observations allow the decoder to identify the support. This
is because each delay chain produces a linear phase propor-
tional to the DFT support. By shifting horizontally and verti-
cally separately in each stage, the decoder can extract the 2D
support of the singletons even without the help of the genie.
In addition, in [1], we show that the bin observation allows us
to almost surely identify zeroton, singleton and multiton bins,
thus eliminating the need for a “genie”.

4.3. Noise-Robust 2D-FFAST

In this section, we provide a brief overview of robust exten-
sions of 2D-FFAST. In [2], we have shown that a noiseless
1D-FFAST framework can be made noise-robust by using
O(log3N) number of delay-chains per sub-sampling stage,
achieving sub-linear computational complexity. Since for 2D-
DFT, we follow a separable approach and perform 2 indepen-
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dent ratio-tests to determine the 2D support of a single-ton
bin, all the results from [2] follow. With O(log3N) spe-
cially designed delays, the 2D-FFAST algorithm computes
a k-sparse 2D-DFT in sub-linear time of O(k log4N) using
O(k log3N) noise-corrupted measurements.

5. SIMULATIONS

In this section, we empirically evaluate performance of the
2D-FFAST algorithm for, both synthetic as well as real-world
magnetic resonance images that go well beyond the signal
model assumed in Section 2. Thus, providing an empirical
evidence that the 2D-FFAST architecture is applicable to a
wider class of input signals beyond the theoretical analysis
provided in the paper. Additional simulation results can be
found in our extended arXiv paper [16].

5.1. Exact k-sparse synthetic image
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Fig. 4. Simulation results on ‘Cal’ image of size Nx ×Ny = 280× 280
and sparsity k = 3509:
(a) Log-intensity plot of the noiseless 2D-DFT
(b) Front-end subsampled noiseless 2D-DFT with sampling factors 5, 7, and
8 and 3 delays per stage. Total samples: m = 4.75k = 16668
(c) Perfectly reconstructed noiseless ‘Cal’ image using 2D FFAST
(d) Noisy image with SNR = 13 dB (Contrast enhanced by 20x for display)
(e) Front-end subsampled noisy 2D-DFT with sampling factors 5, 7, and 8
and 7 delays per stage. Total samples: m = 10.06k = 35308
(f) Perfect location recovered noisy ‘Cal’ image using 2D FFAST with
NMSE= 0.0136

Consider a 280×280 dimensional synthetically generated
“Cal” image, shown in Fig. 4, that has k = 3509 non-zero
pixels. We input the 2D-inverse Fourier transform of the cal
image to the 2D-FFAST algorithm. Note, that the “Cal” im-
age is perfectly k-sparse but the support of the non-zero pix-
els is not distributed uniformly at random. For noiseless, the
2D-FFAST perfectly reconstructs the image with 4.75k mea-
surements. For noisy, 2D-FFAST recovers the exact support
with 10.06k measurements, and results in a normalized MSE
of 0.0136, when the input has SNR of 13 dB.

a b c

d e f

Fig. 5. Simulation results on ‘Brain’ image of size Nx×Ny = 504×504:
(a) Log intensity plot of 2D-DFT of the original ‘Brain’ image, after appli-
cation of the vertical difference operation.
(b) Differential ‘Brain’ image obtained using the vertical difference opera-
tion on the original ‘Brain’ image.
(c) Differential ‘Brain’ image reconstructed using a 3-stage 2D FFAST algo-
rithm from 56.71% of Fourier samples.
(d) Log intensity plot of the 2D-DFT of the original ‘Brain’ image. The red
enclosed region is fully sampled and used for the stable inversion.
(e) Original ‘Brain’ image in spatial domain.
(f) Reconstructed ‘Brain’ image using the 2D-FFAST architecture. The total
number of Fourier samples used is 60.18%.

5.2. Application of the 2D-FFAST for MR imaging

In this section, we apply the 2D-FFAST algorithm to recon-
struct a brain image acquired on an MR scanner (Fig. 5).
In MR imaging the samples are acquired in the Fourier do-
main and the task is to reconstruct the spatial image from less
Fourier samples. To reconstruct the full brain image using
2D-FFAST, we perform the following two-step procedure:

• Differential space signal acquisition: We perform a verti-
cal finite difference operation on the image by multiplying
the 2D-DFT signal with 1 − e2πıω0 , which creates an ap-
proximately sparse differential image, as shown in Fig. 5b,
and can be reconstructed using 2D-FFAST.
• Inversion using fully sampled center frequencies: After

reconstructing the differential brain image, as shown in
Fig. 5, we invert the finite difference operation by dividing
the 2D-DFT samples with 1 − e2πıω0 . Since the inversion
is not stable near the center of the Fourier domain, only the
non-center frequencies are inverted, with the center region
of the 2D-DFT additionally sampled.

Overall we use a total of 60.18% of Fourier measurements to
reconstruct the brain image using the 2D-FFAST algorithm
along with the fully sampled center frequencies. The result-
ing signal-to-noise ratio of the reconstructed image is 4.5173
dB. While the reconstruction error is not as good as state-of-
the-art compressed sensing MRI results, we emphasize that
the 2D-FFAST has both low computational complexity and
low sample complexity , which none of the state-of-the-art
compressed sensing MR reconstruction can achieve. Thus,
providing a new direction of research for designing faster, ef-
ficient and high fidelity MR acquisition systems.
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