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ABSTRACT
In this paper, the problem of compressive imaging is ad-
dressed using natural randomization by means of a multiply
scattering medium. To utilize the medium in this way, its
corresponding transmission matrix must be estimated. For
calibration purposes, we use a digital micromirror device
(DMD) as a simple, cheap, and high-resolution binary in-
tensity modulator. We propose a phase retrieval algorithm
which is well adapted to intensity-only measurements on the
camera, and to the input binary intensity patterns, both to
estimate the complex transmission matrix as well as image
reconstruction. We demonstrate promising experimental re-
sults for the proposed double phase retrieval algorithm using
the MNIST dataset of handwritten digits as example images.

Index Terms— compressed sensing, optical sensors, dig-
ital micromirror device, approximate message passing.

1. INTRODUCTION

From the perspective of image processing, the goal of com-
pressed sensing (CS) is to reconstruct a high-resolution im-
age, which is sparse in either the ambient domain or some
transform basis, using few incoherent linear projections [1].
Over the past decade, there has been a tremendous amount
of work in the field of CS, including analytical reconstruction
guarantees as well as developments of new algorithmic ap-
proaches that provide efficient methods of solving the recon-
struction task [2, 3]. However, to date there have been only a
handful of engineering projects where optical imagers based
on CS have actually been built. Indeed, performing these in-
coherent, usually random, projections is a highly non-trivial
task, requiring innovative hardware solutions. Amongst such
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imagers, one can cite, without any claim of completeness,
several single-pixel imaging systems [4, 5, 6], a random lens
camera [7], and an imaging setup based on a rotating diffuser
[8].

The work presented in this paper is built upon a recently
developed optical CS setup [9] that uses a multiply scattering
medium to effect the random projection operation. The fun-
damental difference with this approach and most of the CS
systems discussed above is that here the random projections
are not designed beforehand and then implemented through
sophisticated hardware, as in [10], but are based on the natural
randomization properties of coherent light multiply scattering
through a layer of opaque material. Here, the word “multi-
ply” refers to the fact that the thickness of the material slab
is many times larger than the mean free path, ensuring that
the light beam is fully scattered without any remaining ballis-
tic photons at the output. If x is the incoming wavefield (the
object to be imaged at the input plane), the scattering opera-
tion is well modeled by a simple linear operator H, called the
transmission matrix. If y is the output wavefield discretized
by receptor pixels, then, in the ideal noiseless case,

y = Hx. (1)

It has been shown that the transmission matrix of a scattering
material is statistically identical to an i.i.d. random matrix
with a complex Gaussian distribution [11]. The benefits of
using such a system for CS imaging are that one does not
have to rely on complex engineering solutions to provide the
(pseudo-) randomization, and also that, in theory, only one
shot is necessary to obtain any desired number of output fea-
tures; as opposed to the single-pixel camera which intrinsi-
cally requires sequential measurements.

There exists, however, an obvious price to pay: the neces-
sity of a precise calibration step. Indeed, to be able to use this
system as an imaging device, i.e. to estimate x given measure-
ments y, one must have accurate knowledge of the matrix H.
This can be accomplished by sending a series of known im-
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ages, measuring the corresponding outputs, and performing a
least-squares estimate of H. The calibration step is conducted
by shaping the input wavefront with a Spatial Light Modula-
tor (SLM), which is only used for calibration and display, and
is not part of the direct imaging system.

In this paper, we circumvent one major limitation of the
previous proof-of-concept system [12]. Since optical sensors
(here, a CCD camera) only measure the field intensity |y|2, in
[12] the input image is phase-modulated using a phase-only
SLM, with relative phases 0, π/4, π/2, and 3π/4. Combining
the corresponding four output intensity images, one can easily
recover the complex field y using a method known as “phase-
stepping holography”. Furthermore, such phase-only modu-
lated images have a constant intensity. To obtain an image that
is sparse in the spatial domain, one has to make the difference
between 2 complex phase-only images which only differs by
a sparse number of pixels. Therefore, in order to get the com-
plex measurements corresponding to a single sparse image, 8
intensity measurements are required. This significantly slows
down both the calibration and the measurement process. Fur-
thermore, a sufficiently fast continuous-phase SLM is a very
expensive device, with limited pixel counts. For example, the
SLM used in [12] could only display 32× 32 images.

Here, we investigate the alternative use of a digital micro-
mirror device (DMD) as an SLM, as shown in Fig. 1. This
has many advantages: DMDs are cheap, fast, and have high
pixel counts. However, the main drawback of these binary
intensity modulators is that, without additional hardware, one
can no longer use phase-stepping to measure the complex out-
put field. Instead of using hardware to measure amplitude
and phase, we resort to “phase retrieval” in order to estimate
the missing phases from intensity-only measurements |y|2. It
should be noted that, in this framework, phase retrieval must
be applied twice successively; first, for the calibration, and
second, for the imaging itself. The success of the second step
crucially depends on the first one, as every error in estimating
H results in multiplicative noise (also called model error) in
the imaging step. It should also be noted that the signal-to-
noise ratio is relatively poor, thus we favor Bayesian phase
retrieval techniques where noise may be explicitly modeled.

The main contributions of this paper are as follows:

• A new Bayesian phase retrieval algorithm known as
phase retrieval Swept AMP (prSAMP). prSAMP origi-
nates from prGAMP [13] and SwAMP [14] and is de-
signed to work with noisy ill-conditioned transmission
matrices.

• The experimental demonstration that prSAMP is effi-
cient both for calibration of the non-sparse measure-
ment matrix H using binary inputs, and for intensity-
only CS imaging of sparse inputs.

Although our previous studies [12] demonstrate a proof-of
concept that CS-based imaging can be made with multiply
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Fig. 1. Experimental setup of the imager, from [9]. A
monochromatic laser at 532 nm is expanded by a telescope
and illuminates an SLM, here, a Texas Instruments DLP9500
DMD with 1920×1080 pixels. The light beam carrying the
image is then focused on a random medium by means of a
microscope lens. Here, the medium is a thick (several tens of
microns) opaque layer of Zinc Oxide nanoparticles deposited
on a glass slide. The transmitted light is collected on the far
side by a second lens, passes through a polarizer, and is de-
tected by an AVT PIKE F-100 monochrome CCD camera.
Note that the DMD is only for calibration and display and is
not part of the imager itself.

scattering materials, we believe that this one-shot imager rep-
resents a very significant step toward real-life applications of
these techniques.

2. THEORETICAL MODELING

Starting from the idealized model of Eq. (1), we formalize the
calibration procedure as in [9]. Given P known binary input
images of size N = n1 × n2, X ∈ {0, 1}P×N , and their
corresponding intensity measurements on M output pixels,
Y ∈ RM×P+ , M independent phase retrieval problems are
solved during the calibration step to estimate the transmission
matrix H ∈ CM×N . Each calibration problems is formulated
as

yTm = |XhTm|, (2)

where (·)m indicates the m-th row of corresponding matrix
and (·)T is the transpose operator. The process of recovering
a signal from only the magnitude of its projections is the goal
of phase retrieval [15, 16, 13]. Apart from additional noise
in the measurements, what makes solving Eq. (2) challenging
is using binary input patterns, since most well-known phase
retrieval methods work well with complex-valued measure-
ment matrices. We have fixed this issue by mixing the ideas
of Swept Approximate Message Passing (SwAMP) [14],
which demonstrates good convergence properties over ill-
conditioned noisy matrices, with the phase retrieval method
prGAMP [13]. The new prSAMP algorithm is explained in
the next section.
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After calibration, the setup can be used as a generalized
CS imager with non-linear (intensity) measurements. In this
reconstruction phase, the noiseless model becomes y = |Hx|.
We use the same prSAMP method, with different priors, to
solve both the calibration and reconstruction tasks.

3. PRSAMP ALGORITHM

In the context of CS, AMP is an iterative algorithm for the re-
construction of a sparse signal from a set of under-determined
linear noisy measurements y = Hx+w, where w ∼ N (0, σ2)
[17]. Although this method originates from loopy belief prop-
agation, it does not suffer from the same computational com-
plexity. AMP has been shown to be effective with a min-
imal number of measurements while being efficient in terms
of computational complexity. Using a Bayesian approach, the
main loop of AMP consists of iteratively updating the esti-
mated mean xa and variance xv of the unknown signal until
convergence,

vt = |H|2xt−1v , (3)

ωt = Hxt−1a − (y− ωt−1) ◦ vt ◦ (vt−1 + σ2)−1, (4)

st = [|H∗|2(vt + σ2)−1]−1, (5)

rt = xta + st ◦H∗[(y− ωt) ◦ (vt + σ2)−1], (6)

[xta, xtv] = pin(r
t, st), (7)

where ◦ is the element-wise Hadamard product, (·)−1 is un-
derstood to be an element-wise reciprocal, (·)t is a time index,
(·)∗ is the conjugate-transpose, and pin is a function based on
the desired signal prior which returns both the mean and vari-
ance estimate of the unknown signal. We refer the reader to
[18] for a detailed description of Bayesian AMP. The cali-
bration and reconstruction phases employ Gaussian and bi-
nary priors, respectively [19, 20]. From [11], we know that
the transmission matrices of scattering mediums appear to be
i.i.d. random matrices. Therefore, a Gaussian prior for the
calibration phase is a reasonable choice. For the reconstruc-
tion phase, two binary priors have been investigated based on
global (per-image) and local (per-pixel) sparsity, the details of
which are explained in the next section.

Generalized AMP (GAMP) [13] is an extension of AMP
for arbitrary output channels, i.e. y = q(Hx + w). This adds
an output function, pout, which is dependent on the stochastic
description of q(·). In Eqs. (4)-(6), the terms (y−ωt)◦(vt−1+
σ2)−1 and−(vt+σ2)−1 indicate pout and p′out, respectively,
for a Gaussian output channel. One can easily modify these
two terms in order to extend the framework to other channels.
Following [13], for the phase retrieval problem we have

pout = ω ◦ (v + σ2)−1 ◦ (r0y ◦ |ω|−1 − 1), (8)

p′out = (v + σ2)−1 ◦
[
(1− r20)y2

(v + σ2)
+
σ2

v

]
− v−1, (9)

Fig. 2. Examples of structured patterns used for calibration.

where r0 = I1(φ)
I0(φ)

, I0 and I1 are 0th and 1st order modified
Bessel functions of first kind, respectively, and φ = 2y◦ |ω| ◦
(v + σ2)−1.

The convergence of both AMP and GAMP has been
proved for zero-mean i.i.d. measurement matrices [21], how-
ever, they do not necessarily converge for generic matrices
[22]. There have been some attempts to prevent divergence of
AMP-based methods [23, 14, 24]. In [14], the authors show
that a simple change in the main AMP loop may stabilize
AMP significantly. They propose a sequential, or swept, ran-
dom update of the AMP messages st, rt, xta and xtv, instead of
their standard parallel calculation. By combining the swept
update ordering and the phase retrieval output channel (8)-(9)
in the AMP iteration (3)-(7), we create a phase retrieval ver-
sion of SwAMP, denoted as prSAMP, which we describe in
Algorithm 1.

Algorithm 1: Phase Retrieval Swept AMP (prSAMP)

Input : x0a , x0v
Output: xta
ω0 ← 0
for t = 1 to tmax do

Calculate vt, ωt, pout and p′out.
τ ← Random-Permutation([1, 2, . . . , N ])
foreach i in τ do

Calculate sti, r
t
i , x

t
ai and xtvi

vold ← vt , ωold ← ωt

vt ← vold + h2
i (x

t
vi − x

t−1
vi )

ωt ← ωold + hi(xtai − x
t−1
ai )− pout(vt − vold)

Calculate pout, p′out
Break if converged

4. EXPERIMENTAL RESULTS

To investigate the performance of the proposed imaging sys-
tem, two binary datasets are constructed from the spatially-
sparse MNIST handwritten dataset. The first, D1, consists
of cropped digit images at a resolution of 20 × 20 pixels
(N = 400). The second, D2, is constructed by rescaling the
MNIST dataset to 32 × 32 pixels (N = 1024). Both D1 and
D2 retain the original MNIST training/testing partition.

For the calibration step, training set D1 is modified by
randomly exchanging 5×5 blocks of pixels between digit im-
ages. Fig. 2 shows a few samples of these structured patterns.
This structured randomization is done to reduce the effect of
correlation between the DMD pixels. Additionally, to avoid
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Fig. 3. Left: Calibration performance of both prSAMP and
prVBEM for varying numbers of calibration patterns P =
αN which are generated from the D1 dataset. Right: Re-
construction performance over 50 digits of D2 (N = 1024)
using prSAMP with both global and local binary priors for
M = {300, 400, 500, 600, 700} output samples.

Fig. 4. Visual performance of prSAMP reconstruction for
32×32 images at M = 700. Top row: Original images. Mid-
dle row: prSAMP with local prior. Bottom row: prSAMP
with global prior.

the possibility of completely zero, or very sparse, lines in X,
see Eq. (2), we introduce a fixed number of unstructured i.i.d.
Bernoulli random binary patterns to the calibration training
set.

The transmission matrix is then estimated from P = αN
calibration images, of which the first N are Bernoulli ran-
dom patterns, for the oversampling ratio α ≥ 1. At the re-
ceptor, M samples are randomly selected from a 100 × 100
region of the output image. Fig. 3 (left) shows the perfor-
mance of the proposed calibration method for varying val-
ues of α. In lieu of ground-truth comparisons for transmis-
sion matrix estimation, we assess the calibration performance
in terms of “dependence,” the normalized cross-correlation
without mean removal,

〈
y
‖y‖ ,

|Hx|
‖Hx‖

〉
, between observed sam-

ples and the predicted output of known input patterns using
the estimated transmission matrix. We measure dependence
over 400 digits from the testing set of D1. We compare the
level of achieved dependence between prSAMP and prVBEM
[9], a mean-field variational Bayes phase retrieval technique
we previously employed for the task of transmission matrix
calibration in the context of light focusing.

After calibration, the direct imaging phase can start. As
described in Section 3, the calibration and reconstruction

steps are performed using the same prSAMP algorithm with
different input priors. During calibration, we assume a com-
plex Gaussian prior since the transmission matrix is modeled
as i.i.d. random. However, for reconstruction, a binary prior
is required,

xtai =
ρi
zi

e
−|1−rti |

2

2st
i , xtvi = xtai − (xtai)

2, (10)

where zi = (1 − ρi)e
−|rti |

2

2st
i + ρie

−|1−rti |
2

2st
i , and ρi indicates

the probability of pixel i to be non-zero. We use two strate-
gies to set this parameter. The first is a global approach which
sets all ρi uniformly to the input image sparsity level which
we assume is known up to some tolerance. In the second lo-
cal approach, we empirically calculate the per-pixel non-zero
probability using the calibration training set, which is a fast
off-line process. As the prior calculation must be repeated at
each pixel for each sweep of the prSAMP algorithm, we se-
lect the simplest possible prior for the sake of computational
efficiency. The interested reader may refer to [25] for a more
sophisticated method of using learned priors for reconstruc-
tion tasks.

We next use the D2 dataset to study the effectiveness of
prSAMP post-calibration reconstruction. We first perform the
calibration step to estimate M = N rows of the transmission
matrix using α = 5, yielding an average calibration correla-
tion of 97% over 1024 test digits. For reconstruction, we ran-
domly choose 50 images from the test set, with five images for
each digit. The correlation of prSAMP reconstructions to the
true inputs, using global and local binary priors, are compared
in Fig. 3 (right) as a function of the measurement rate M/N .
Leveraging the extra information in the local prior provides an
average 14.87% increase in reconstruction performance over
the global prior. To visually assess the quality of recovered
images, Fig. 4 provides one instance from each digit recov-
ered at M = 700, with reconstructions using the local and
the global priors. As expected, the local prior provides better
subjective quality with fewer spurious isolated pixels.

5. CONCLUSION

In this study, a phase retrieval compressive imager has been
proposed and experimentally evaluated using a simple optical
setup. The imager has the potential of providing high reso-
lution images in one shot. We solve the challenging prob-
lem of estimating a complex transmission matrix using binary
patterns and we solve the phase retrieval problem via swept
AMP. Finally, we show that we can estimate the transmis-
sion matrix accurately, allowing it to be used for compressive
imaging. Further studies are necessary to provide faster cali-
bration methods.
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[24] B. Çakmak, O. Winther, and B. Fleury, “S-AMP: Ap-
proximate message passing for general matrix ensem-
bles,” in IEEE Info. Theory Work., 2014, pp. 192–196.

[25] E.W. Tramel, A. Drémeau, and F. Krzakala, “Approx-
imate message passing with restricted Boltzmann ma-
chine priors,” J. Stat. Mech.: Theory & Exp., 2016, to
appear.

4058


