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ABSTRACT

We study the design of measurement matrices for compressed sens-
ing, where the goal is to stably acquire and reconstruct arbitrary
K-sparse N -length signals in the presence of noise. We propose a
new design framework that simultaneously leads to low measure-
ment cost and low computational cost. In particular, the proposed
framework guarantees successful recovery with high probability us-
ing O(K logN) measurements with a computational complexity
of O(K logN). Both the measurement cost and algorithm run-
time are order-optimal for support recovery when K = O(Nδ) for
some 0 < δ < 1. To the best of our knowledge, this is the first
result that achieves this optimal scaling. The remarkable gains are
brought by the proposed measurement structure based on sparse-
graph codes, which allows for reconstructions of sparse signals us-
ing a simple peeling decoder. More generally, we formally connect
general sparse recovery problems with sparse-graph decoding, and
demonstrate our design in terms of the measurement cost, compu-
tational complexity and performance.

Index Terms— Compressed sensing, sub-linear time, sparse-
graph codes, measurement matrix

1. INTRODUCTION

A classic problem of interest in many applications is that of esti-
mating an unknown vector x of length N

y = Ax + w, (1)

where A is an M × N measurement matrix and w is an additive
noise vector. If the signal is K-sparse in some basis with K � N ,
it can be recovered from significantly fewer measurements, as stud-
ied in compressed sensing. In this paper, we focus on recovering
the exact support of any K-sparse signal. The so-called support
recovery problem arises in applications including model selection,
sparse approximation and subset selection. Therefore, the design of
good measurement matrices and efficient reconstruction algorithms
are critical. This boils down to two questions of interest:

Q1) Measurement cost: what is the smallest number of measure-
ments M required to guarantee recovery?

Q2) Computational cost: how fast can one reconstruct a K-
sparse signal given the M measurements from some A?

The answer to Q1 is well understood under information-theoretic
settings. In the presence of noise, the results in [1–3] indicate a
minimum measurement cost of O(K log(N/K)) for exact support
recovery, here referred to as the optimal scaling. For Q2, it is de-
sirable if the complexity scales linearly with the measurement cost
O(K log(N/K)). However, so far there are no achievable schemes
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that achieveO(K log(N/K)) costs in both measurements and run-
time in the worst case. Therefore, an intriguing question is:

“Under probabilistic settings, is it possible to achieve the
optimal scaling in both measurements and run-time?”

We answer this question in the affirmative under the sparsity regime
K = O(Nδ) for any 0 < δ < 1. We propose a novel compressed
sensing framework based on sparse-graph codes, and show that with
high probability, our framework guarantees successful recovery in
time O(K logN) using M = O(K logN) measurements. Under
this sparsity regime, our scaling is order-optimal and the run-time
becomes sub-linear in N . To the best of our knowledge, this is the
first constructive design for noisy compressed sensing that achieves
the same order-optimal costs in both measurements and complexity
under probabilistic guarantees. This can potentially enable real-
time processing for massive datasets featuring sparsity, which is
relevant to a multitude of practical applications.

2. MAIN RESULTS AND RELATED WORK

In this work, we break the barrier of super-linear scaling in N . We
assume that all the non-zero coefficients belong to

X := {Aeiθ : A ∈ A, θ ∈ Θ}

where A and Θ are arbitrarily large finite sets1. Given some esti-
mate x̂, our error metric is the probability PF of recovery failure

PF := Pr (supp (x̂) 6= supp (x)) , (2)

where supp (x) := {k : x[k] 6= 0, k ∈ [N ]} and [N ] is the set of
integers {0, 1, · · · , N − 1}.
Theorem 1. Given any K-sparse signal x with its non-zero coeffi-
cient x[k] ∈ X and w ∼ N (0, σ2I), then with a vanishing failure
probability PF = O(1/K), our framework recovers the exact x
with M = O(K logN) measurements in time O(K logN).

Proof. See the Appendix in [24].

Here we give a brief account of related work. The most relevant
scheme is the class of greedy pursuit algorithms, which detects the
sparse support iteratively and refines the approximation in each iter-
ation. Examples include Orthogonal Matching Pursuit (OMP) [4],
CoSaMP [5], Regularized OMP (ROMP) [6] and so on. Typically,
these algorithms run in polynomial time poly(N) for both noise-
less and noisy settings, except for the StOMP algorithm [7] with a
near-linear run-timeO(N logN). Successful recovery in the worst
case typically requires a measurement scalingM = O(K2) even in
the absence of noise [8]. Although the measurement scaling can be
reduced to M = O(K log(N/K)) under probabilistic settings [9],
the best achievable complexity still scales super-linearly with N .

1This is imposed to simplify our analysis. Since its cardinality can be
arbitrarily large, it subsumes all signals quantized with finite precisions.
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Another popular class of algorithms is based on `1-norm min-
imization using convex optimization [10], which rests on the as-
sumption of the Restricted Isometry Property (RIP) of the mea-
surement matrix. It has been shown that the RIP condition can
be satisfied with high probability using M = O(K log(N/K))
measurements by randomized constructions. However, this class of
algorithms run in polynomial time poly(N). To reduce the com-
plexity, there are coding-theoretic designs leveraging the proper-
ties of expander graphs [11–14] to achieve lower computational
costs [15–17], whose complexities scale super-linearly in N . In
particular, [18] introduces a RIP-1 condition and shows that the
adjacency matrix of good expander graphs satisfies the condition,
which allows for near-linear time recovery O(N log(N/K)) us-
ing O(K log(N/K)) measurements. However, the run-time still
scales super-linearly with N . To achieve a sub-linear scaling in N ,
the results in [19, 20, 22] achieve O(K logO(1)N) run-time with
optimal measurement scaling but at a constant failure probability.

3. MAIN IDEA

Now, we describe our design framework through a simple example.
In this simple example, we make a few assumptions and gradu-
ally unfold our design by getting rid of the assumption one-by-one.
More specifically, we first introduce in Section 3.1 the main idea
of our measurement design by connecting compressed sensing with
sparse-graph codes. In this running example, we first illustrate our
recovery algorithm with the help of an “oracle”, and then explain in
Section 3.2 how to get rid of the “oracle”.

3.1. Oracle-based Sparse-Graph Decoding

Consider a signal x of lengthN = 16 withK = 5 non-zero coeffi-
cients supp (x) = {1, 3, 5, 10, 13}. We construct a bipartite graph
with 16 left nodes and 9 right nodes with the following properties:

• Each left node labeled with k is associated with x[k];

• Each left node is connected to each right node based on the
sparse bipartite graph2 in Fig. 1;

• Each right node labeled with r is assigned a value yr equal to the
sum of its neighbors3

y = Hx, (3)

where H ∈ {0, 1}R×N is the adjacency matrix.
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Fig. 1: A bipartite graph consisting of 5 left nodes and 9 right
nodes, where each left node represents a non-zero coefficient x[k].

2We show only the edges from variable nodes with x[k] 6= 0.
3This is similar to encoding a message x using the parity check matrix

of some linear block code (e.g. sparse-graph codes), where the observation
y resembles the parity-check constraints.

Now we briefly introduce how this bipartite graph leads to fast
recovery of the 16-length 5-sparse signal x from the 9 measure-
ments shown on the right nodes in Fig. 1. Depending on the degrees
of the right nodes, we categorize the measurements as:

1. Zero-ton: a right node that contains no non-zero coefficients
(e.g., the color blue in Fig. 1).

2. Single-ton: a right node that contains only one non-zero co-
efficient (e.g., the color in yellow in Fig. 1). We refer to the
index k and value α = x[k] as the index-value pair (k, α).

3. Multi-ton: a right node that contains more than one non-
zero coefficient (e.g., the color red in Fig. 1).

We assume that there is an “oracle” that informs the decoder
which right nodes are single-tons and their index-value pairs. With
the oracle information, the peeling decoder repeats the following:

Step (1) select all the edges in the bipartite graph with right degree
1 (identify single-ton bins);

Step (2) peel off these edges and the corresponding pair of variable
and right nodes connected to these edges.

Step (3) peel off all other edges connected to the variable nodes
that have been removed in Step (2).

Step (4) subtract the variable node contributions from right nodes
whose edges were removed in Step (3).

Decoding is successful if all the edges are removed from the graph.
However, this example does not work for arbitrary signals. In gen-
eral, there are specific guidelines for constructing such bipartite
graphs for successful peeling, which have been studied extensively
in the context of sparse-graph codes [23].

A popular ensemble in sparse-graph codes is the d-regular
graph ensemble GNreg(R, d) consisting ofN left nodes andR = ηK
right nodes for some η > 0. In this ensemble, each left node is
connected to d right nodes uniformly at random4. The number of
right nodes R determines the measurement cost, while the number
of steps taken to peel off all the edges from the graph corresponds
to the computational cost with an oracle-based decoder. Clearly,
the more right nodes, the easier to have single-tons and thus more
friendly for peeling. The critical question now becomes what is the
minimum number of right nodes that are necessary for peeling?

Lemma 1. If η > 0 is chosen according to the left degree d as5:

d 2 3 4 5 6
min. η 2.0000 1.2219 1.2948 1.4250 1.5696

the oracle-based decoder succeeds in peeling off all edges inO(K)
steps with probability at least 1−O(1/K).

Proof. Here we provide an outline of the proof highlights, and we
provide the details in the Appendix of [24].

• Density evolution: We analyze our peeling decoder over a
typical graph (i.e., cycle-free) of the ensemble GNreg(R, d)
for a fixed number of peeling iterations i. We assume that
the local neighborhood of every edge in the graph is cycle-
free (tree-like) and derive a recursion that tracks the average
density pi of remaining edges in the graph at iteration i:

pi = f(pi−1) =
(

1− e−
d
η
pi−1

)d−1

, (4)

which can be made to strictly satisfy pi < pi−1 as long as η
is chosen according to d as Lemma 1.

4The graph in Fig. 1 is an instance from the ensemble G16reg(9, 2).
5Limited by space, we only show the choice of minimum η for d ≤ 6.
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• Convergence to density evolution: Using a Doob martin-
gale argument [25], we show that the local neighborhood of
most edges of a randomly chosen graph from GNreg(R, d) is
cycle-free with probability at least 1−O(1/K). This proves
that with high probability, our peeling decoder removes all
but an arbitrarily small fraction of the edges in the graph in
finite iterations i.

• Graph expansion property for complete decoding: we
show that if the sub-graph consisting of the remaining edges
is an expander graph, and if our peeling decoder success-
fully removes all but a small fraction of the edges, then it
continues to remove all the remaining edges. This completes
the decoding of all non-zero coefficients in x.

There are other irregular graph constructions that achieve η =
1 asymptotically and hence the measurement cost approaches R =
K, but it does not affect the scaling of our results so we consider
the regular ensemble for simplicity.

3.2. The Noiseless “Oracle”: Binary Ratio Test

Now we explain how to obtain the oracle information. For simplic-
ity, we discuss the noiseless scenario first and defer the noisy oracle
to Section 4. The trick is to accrue more measurements at each right
node by lifting the simple sum into a vector sum, where the n-th left
node is weighted by the n-th column of the bin detection matrix

S = (−1)B, (5)

where B =
[
b0 b1 · · · bN−1

]
is the binary expansion ma-

trix with n = dlog2Ne such that each column bk is an n-bit bi-
nary representation for all k ∈ [N ]. In our running example with
N = 16, the 4× 16 binary expansion matrix is

B =

0 0 0 0 0 0 0 0 · · · 1
0 0 0 0 1 1 1 1 · · · 1
0 0 1 1 0 0 1 1 · · · 1
0 1 0 1 0 1 0 1 · · · 1

 (6)

and the bin detection matrix is:

S =


(−1)0 (−1)0 (−1)0 (−1)0 · · · (−1)1

(−1)0 (−1)0 (−1)0 (−1)0 · · · (−1)1

(−1)0 (−1)0 (−1)1 (−1)1 · · · (−1)1

(−1)0 (−1)1 (−1)0 (−1)1 · · · (−1)1

 . (7)

3.2.1. A Simple Noiseless Case with Known x[k]

For simplicity, we assume that the values are all known x[k] = 1 for
k ∈ supp (x) but the locations k are unknown. In Section 3.2.2, we
explain how to get rid of this assumption. Given this bin detection
matrix and that all x[k] = 1 by assumptions, right nodes 1, 2 and 3
are associated with measurements y1 = 0,

y2 =


(−1)0

(−1)0

(−1)0

(−1)1

+


(−1)0

(−1)1

(−1)0

(−1)1

+


(−1)1

(−1)1

(−1)0

(−1)1

 , y3 =


(−1)1

(−1)0

(−1)1

(−1)0

 .
Now, one can easily determine if a right node is a zero-ton, a single-
ton or a multi-ton as follows:
• zero-ton bin: consider the right node 1. A zero-ton can be

identified easily since the measurements are all zero y1 = 0;

• single-ton bin: consider the right node 3. A single-ton can
be verified by checking if |y3[1]| = · · · = |y3[4]| and the

unknown index can be obtained by taking the sign6 of each
measurement sgn [y3[p]] such that

k̂ =

n∑
p=1

2p−1 × sgn [y3[p]] . (9)

Finally, since the measurement y2 from right node 2 does not pass
the zero-ton and single-ton tests, it can be concluded as a multi-ton.

3.2.2. General Noiseless Case with Unknown x[k]

In the general noiseless case where x[k] is unknown, we can easily
modify the simple case by concatenating an extra “all-one” row
vector with the bin detection matrix S as

S =


1 1 1 1 · · · 1

(−1)0 (−1)0 (−1)0 (−1)0 · · · (−1)1

(−1)0 (−1)0 (−1)0 (−1)0 · · · (−1)1

(−1)0 (−1)0 (−1)1 (−1)1 · · · (−1)1

(−1)0 (−1)1 (−1)0 (−1)1 · · · (−1)1

 . (10)

Using this bin detection matrix, for the single-ton right node 3, we
would have y3 = x[10]×

[
1, (−1)1, (−1)0, (−1)1, (−1)0

]
, which

gives us y3[0] = x[5] and the unknown index k can be obtained as:

k̂ =

n∑
p=1

2p−1 × sgn [y3[p]]⊕ sgn [y3[0]] . (11)

However, in the presence of noise, these tests no longer work as an
oracle. Next we explain how to get rid of the oracle in this setting.

4. ROBUST BIN DETECTION

For convenience, we denote an arbitrary measurement bin as y by
dropping the right node index r

y = Sz + w (12)

with some sparse vector z. Before the peeling starts, the sparsity of
z depends on the connectivity of the right node, but eventually, the
vector z reduces to a 1-sparse vector when becoming a single-ton.

The bin detection matrix S can be regarded as a codebook for
encoding the unknown value and location of the 1-sparse coefficient
in z, where each column of S is a codeword. In the noiseless case,
each codeword in S is the bipolar {±1} image of the corresponding
binary code bk of the column index k, and hence it is not difficult to
decode the transmitted message bk and recover k. However, in the
presence of noise, the codebook needs to be re-designed such that
it can be robustly decoded. Specifically, the bin detection matrix is
constructed as S = [ST0 ,S

T
1 ,S

T
2 ]T , where Si is chosen as follows.

Definition 1. Let n = dlog2Ne and B be the n × N binary ex-
pansion matrix in (6). We choose the codebooks Si as:

• S0 = 1P×N is an all-one codebook (i.e. repetition codes);

• S1 = (−1)C and C = GB, where G is the P × n gener-
ator matrix for an expander code with block length P , and
R(β) = n/P is the rate of the code determined by the nor-
malized minimum distance β with respect to P ;

• S2 is a P ×N random codebook with Rademacher entries.

6the sign function is defined slightly different than the usual case:

sgn [x] =

{
1, x < 0

0, x ≥ 0
(8)
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The reason for choosing expander codes for S1 is due to its
minimum distance properties and linear decoding time (with re-
spect to its block length) using the bit flipping algorithm [26]. With
this design, we obtain three measurement sets in each bin:

ui = Siz + wi, i = 0, 1, 2. (13)

We perform the bin detection using each set differently in the zero-
ton test and the single-ton test. For the zero-ton test, we use the
measurement set u2 and perform an energy test with some param-
eter γ ∈ (0, 1). The node is accepted as a zero-ton if

1

P
‖u2‖2 ≤ (1 + γ)σ2. (14)

After ruling out zero-tons, now it remains to identify the index-
value pairs (k, α) in two steps:

• the single-ton search estimates the index-value pair (k̂, α̂)
assuming that the bin is a single-ton. Specifically, the mea-
surement set u1 is used for obtaining the estimate k̂ of the
index k and the measurement set u0 is used for obtaining the
estimate α̂ of x[k], the details of which are given next.

• the single-ton verification uses the measurement set u2 to
confirm whether the bin is in fact a single-ton

1

P

∥∥u2 − S2 · α̂1k̂
∥∥2 ≤ (1 + γ)σ2.

It can be shown (see the proof of Lemma 2) that zero-tons and
multi-tons will be ruled out with high probability, and hence we
focus on the case of single-tons and discuss the single-ton search.

If the underlying bin has an index-value pair (k, α), the mea-
surement u1 is the noisy version of some coded message Gbk

u1 = α× (−1)Gbk + w1, (15)

where bk is the k-th column of the binary expansion matrix B.

Proposition 1. Given a single-ton bin with an index-value pair
(k, α), the sign of the measurement set u1 satisfies

sgn [u1] = Gbk ⊕ sgn [α]⊕ e, (16)

where e is a binary error vector containing P Bernoulli variables

with a cross probability upper bounded as Pe = e
− |x[k]|

2

2σ2 .

Proof. The proof can be obtained by standard Gaussian tail bounds,
and hence we omit it here due to lack of space.

Although α is unknown, it can be estimated using u0:

α̂ = min
x∈X

∣∣∣x− 1Tu0/P
∣∣∣2 . (17)

It can be shown that the Pr (α̂ 6= x[k]) also decays exponentially
(see the proof of Lemma 2 below) and therefore, we have

sgn [u1]⊕ sgn [α̂] = Gbk ⊕ e. (18)

Because the index k can be obtained from bk directly, we only need
to decode bk reliably over a binary symmetric channel (BSC) with
a cross probability Pe. Since the codebook C = GB from Defini-
tion 1 has a minimum distance βP , it is obvious that the message
bk can be decoded with exponentially decaying error probability
by the tail bound on the errors (see Lemma 2) as long as β > Pe.

Lemma 2. The error probability of the robust bin detection scheme
by Definition 1 decays exponentially in P if the generator matrix G
has a normalized minimum distance β > Pe.

Proof. We refer readers to the Appendix of [24].

It has been well established [26] that for any given minimum
distance βP , one can construct an expander code that satisfies this
minimum distance property with high probability. Thus we can
randomly generate the matrix G offline and verify its minimum
distance, and then keep using it for all instances.

5. NUMERICAL EXPERIMENTS

We provide the empirical performance of our design. Each data
point is generated by averaging 200 experiments, where the signals
x are generated once and kept fixed for all the subsequent experi-
ments. The signal-to-noise ratio (SNR) is defined as

SNR =
E
[
‖Ax‖2

]
E
[
‖w‖2

] =
‖x‖2

σ2

d

R
(19)

where d is the regular left node degree of the bipartite graph, R is
the number of right nodes in the graph. The noise is generated as
i.i.d. Gaussian with variance σ2 according to SNR= 20dB. The
measurement matrix A is constructed as follows:
• the coding matrix H is constructed using the regular graph

ensemble GNreg(R, d) with a regular degree d = 3 and a re-
dundancy R = 2K;

• we choose the P × log2N generator matrix G based on
a (3, 6)-regular LDPC code (i.e. P = 2 log2N ), and the
single-ton search utilizes Gallager’s bit flipping algorithm.
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Fig. 2: Run-time against N = 2n with SNR=20dB.

Under our settings, sinceR = 2K and P = 2 log2N , the mea-
surement cost can be obtained accordingly as M = 12K log2N .
Specifically, it can be seen from Fig. 2 that the run-time scales
sub-linearly with respect to N . For instance, when N = 222 ≈
4 million and K = 500, the measurement cost is approximately
M = 0.13 million and the run-time is less than 10 seconds.

6. CONCLUSIONS

We propose a new compressed sensing design using sparse-graph
codes that simultaneously leads to low measurement cost and low
computational cost. Our scheme uses binary measurement matrices
that are practical and robust to numerical precisions in implementa-
tion. To the best of our knowledge, this is the first known construc-
tive scheme for noisy compressed sensing that achieveO(K logN)
costs in both measurements and complexity. We also provide sim-
ulation results to corroborate our theoretical findings.
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