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ABSTRACT

In this paper we analyze the mean squared error (MSE) for
one-bit compressed sensing schemes based on measurement
matrices that correspond to unit norm tight frames. We show
that, as in the unquantized case, sensing with unit norm tight
frames improves the MSE in the reconstruction of sparse vec-
tors from one-bit measurements using `1 and thresholding al-
gorithms. From our analytical and experimental results we
conclude that when implementing one-bit compressed sens-
ing schemes with fixed measurement matrices unit norm tight
frames are the measurements of choice.

Index Terms— one-bit compressed sensing, unit norm
tight frames

1. INTRODUCTION

Analog-to-digital converters (ADCs) are being pushed to their
limits by applications involving new signal processing and
communication systems, designed with ever higher acquisi-
tion resolutions and wider bandwidths. Developing high rate,
high resolution ADCs is still a technological challenge. In
addition, power consumption in the ADCs increases quadrat-
ically with sampling frequency [1].

One approach to overcoming this consumption limitation
is using low resolution and even one-bit ADCs. A one-bit
ADCs is built from a simple comparator, which can work
at high sampling rates with a very low power consumption.
Intuitively, recovering a signal from the sign of its samples
has strong limitations if no other assumptions are made. One
solution is to exploit structures in the problem, for example
sparsity, which allow for the use of compressive sensing tech-
niques [2]. The recovery of a sparse signal using only one-bit
measurements is called one-bit compressed sensing (CS) [3].
One-bit CS techniques have proved useful in the context of
optical imaging [4] and channel estimation in mmWave com-
munications [5].
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The choice of the measurements for one-bit CS has been
addressed in previous papers using mainly two different ap-
proaches: i) use fixed random measurement matrices [3] and
ii) use adaptive CS, by either choosing adaptively the mea-
surements or the threshold of the one-bit quantizer [6, 7, 8].
Since controlling the accuracy of the error estimate is difficult
when using fixed transforms, the main objective of the adap-
tive approach is to reduce the mean square error (MSE) in the
reconstruction by using the information extracted from pre-
vious measurements to iteratively construct the measurement
matrix. The main limitation of this approach is that the adap-
tive design introduces additional computational complexity,
since an optimization problem has to be solved during the
acquisition process to construct the new measurements to be
applied. This may be restrictive in many situations.

In this work we focus on defining one-bit CS strategies
capable of reducing the MSE using fixed measurement matri-
ces to avoid the extra complexity of adaptive approaches. In
the general framework of sparse recovery from unquantized
and fixed measurements, the reconstruction capability of var-
ious recovery algorithms (basis pursuit denoising, orthogonal
matching pursuit and the Dantzig selector) has been analyzed
in [9]. This work shows that the performance of these al-
gorithms is close, with high probability, to the performance
of the oracle estimator (i.e., solving a least squares problem
on the known support). A more recent result [10] has shown
that to minimize the mean squared error (MSE) of the ora-
cle estimator the measurement matrix should be a unit norm
tight frame. Coupled with the results in [9], the results in [10]
also extends to the sparse recovery algorithms from unquan-
tized measurements. Given that the reconstruction algorithms
for one-bit compressed sensing are different, a natural ques-
tion that arises is whether there is also a benefit from using
tight frames as measurement matrices in the context of one-
bit sparse recovery.

In this paper we provide a theoretical argument and then
show experimentally that, in the context of one-bit sparse re-
covery, selecting a unit norm tight measurement matrix pro-
vides lower MSE in the reconstruction than using a random or
an incoherent measurement matrix. Unlike for the adaptive
methods, given that tight frames can be constructed offline
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there is no extra complexity associated to this approach. In the
results section we show experimentally that tight frames per-
form better than random measurement matrices for any choice
of sparsity and number of measurements. The conclusion of
our work is that tight frames should be used for one-bit CS
with fixed measurements.

2. BACKGROUND ON 1-BIT CS

Using the one-bit compressive sensing framework the avail-
able measurements are

ȳ = sign(Ax), (1)

where sign(z) is −1 for all z ≤ 0 and 1 otherwise; x ∈ RN

denote the sparse vector to be measured via the measurement
matrix A ∈ Rm×N such thatm < N with a power constraint,
i.e., a constraint on the Frobenius norm ‖A‖F . Notice that by
these binary measurements we do not obtain any information
about the magnitude of x. Thus the best we can hope to do is
recover a normalized x, i.e., placed on the unit hypersphere
‖x‖2 = 1.

When dealing with one-bit CS, the goal is to recover the
sparse signal x from the m binary measurements by solving
a non-convex optimization problem:

minimize
x

‖x‖0 subject to ȳ = sign(Ax). (2)

Previous work has already proposed several ways to ap-
proach this problem [3, 11, 12, 7, 6, 13, 14]. In this paper we
choose to proceed using the approach in [11]. Therefore, the
problem in (2) is relaxed and the signal can be accurately re-
covered, under certain assumptions, by the following `1 min-
imization convex optimization problem:

minimize
x

‖x‖1

subject to diag(ȳ)Ax ≥ 0,

m∑
i=1

ȳia
T
i x = m.

(3)

The last constraint has the role of keeping the solution x away
from the 0N×1 solution and also deals with the energy am-
biguity which is intrinsic to the one-bit compressive sensing
problem. It has been shown that s-sparse signals in RN can be
recovered (up to normalization) from Ω(s log(N/s)) one-bit
measurements [11, 12] by solving (3). In this paper, problem
(3) is the standard way we will recover sparse signals from
one-bit measurements.

For comparison, in the results section we also consider a
binary thresholding algorithm [13] that has been proposed as
an alternative to the `1 norm recovery problem (3).

All discussions deal with the real valued case. In the case
of complex variables and measurements, i.e., y = Ax, we
equivalently have the extended real valued ye = Aexe:[

<(y)
=(y)

]
=

[
<(A) −=(A)
=(A) <(A)

] [
<(x)
=(x)

]
. (4)

Define the one-bit measurements ȳe = sign(ye). Thus all the
previous proposed methods are solved in a 2N–dimensional
space. Most importantly, the `1 recovery problem (3) is
slightly reformulated in the complex valued case:

minimize
xe

‖xe
1:N + jxe

N+1:2N‖1

subject to diag(ȳe)Aexe ≥ 0,

m∑
i=1

ȳei

[
<(a(θi))
=(a(θi))

]T
xe = m.

(5)
The objective function is chosen to reflect the fact that the
goal is to produce a sparse complex vector of size N , not a
sparse real vector of size 2N which would be the case with
the objective function ‖xe‖1. Notice that in the complex
case each measurement provides two signs sign(<(yi)) and
sign(=(yi)).

3. THE USE OF TIGHT FRAMES FOR 1-BIT CS

In this section we consider ways of designing measurements
such that we reduce the MSE when using sparse signal re-
covery from one-bit information. We study the effects of us-
ing a measurement matrix that is a tight frame, i.e., a frame
A ∈ Rm×N such that AAT = Nm−1Im. Tight frames have
been extensively studied in the frame theory literature and
have found many applications. For example reconstruction
of a signal from its tight frame coefficients is numerically op-
timally stable while uniform tight frames have been shown to
be useful for robust data transmission [15]. Unlike incoherent
frames, tight frames can be easily constructed via a QR factor-
ization applied to a random matrix and, if unit norm columns
are desired, by an iterative process that exhibits low compu-
tational complexity [16] or by selecting rows of Hadamard or
Fourier matrices.

We now consider the optimization problem in (3) when
we assume a measurement matrix A that is a tight frame. We
re-write problem (3) equivalently as:

minimize
x,r; r≤0

‖x‖1

subject to
[

diag(ȳ)A Im
m−111×mdiag(ȳ)A 01×m

] [
x
r

]
=

[
0m×1

1

]
,

(6)
where r ∈ Rm is the slack variable. We will denote

B =

[
diag(ȳ)A Im

m−111×mdiag(ȳ)A 01×m

]
. (7)

We are interested in the properties of the effective measure-
ment matrix B used in (6). Observe that

BBT =

[
N+m
m Im

N
m2 1m×1

N
m2 11×m

N
m2

]
∈ R(m+1)×(m+1), (8)

has a diagonally dominant symmetric arrowhead matrix struc-
ture and is positive semi-definite. We have used the fact that

diag(ȳ)AAT diag(ȳ)T =
N

m
Im. (9)
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The spectral properties of general arrowhead matrices have
been analyzed in [17]. In our case, there are two results that
exactly describe the spectral properties of the matrix in (8).

Result 1.The matrix in (8) has m − 1 eigenvalues (N +
m)m−1.

Proof. Let λ1, λ2, . . . , λm+1 be the sorted eigenvalues
of BBT in increasing order. We use Cauchy’s interleaving
theorem ([18, page 89]) the eigenvalues λi are interlaced with
the sorted diagonal elements of the upper right-hand corner
of BBT as 0 ≤ λ1 ≤ N+m

m ≤ · · · ≤ λm ≤ N+m
m ≤ λm+1.

This shows that λ2 = λ3 = · · · = λm = (N + m)m−1

since the first m diagonal elements of BBT are all equal to
(N +m)m−1. �

Result 2.The matrix in (8) has two eigenvalues with val-
ues (2m2)−1(α±

√
α2 − 4m2N) where α = m2+mN+N .

Proof. Since we are looking for only two eigenvalues,
λ1 and λm+1, it is enough to find their sum and product in
order to identify them. We focus on calculating tr(BBT )
and det(BBT ). The trace is trivial to compute while for the
determinant we use the matrix determinant lemma det(A +
UVT ) = det(I + VTA−1U)det(A) on

BBT =

[
N
mIm 0m×1

01×m
N
m2 −

(
N
m2

)2
m

]

+

[
Im

N
m2 11×m

] [
Im

N
m2 1m×1

]
.

(10)

Using this result we reach the that det(BBT ) = N
m2

(
N+m
m

)m−1
.

Therefore, for the two unknown eigenvalues we have that
λ1 + λm+1 = N+m

m + N
m2 , λ1λm+1 = N

m2 . Solving the
quadratic equation for the unknowns finalizes the proof. For
relative high values of m (with m < N ) we have Nm−2 ≈ 0
and therefore λ1 ≈ 0 and λm+1 ≈ (N +m)m−1. �

These results show that simply starting from a unit norm
tight measurement matrix A the `1 recovery problem in (6)
deals with an effective measurement matrix B whose proper-
ties are closely related to those of unit norm tight frames.

Given the structure of B these results are to be expected.
In fact notice that when A is a unit norm tight frame so is[
diag(ȳ)A Im

]
. Therefore, B operates like a tight frame

in a subspace of dimension m. Since tight frames have been
shown to improve MSE [10] for general, unquantized, sparse
recovery `1 optimization problems that are related to (6) we
expect them to provide similar improvement also for the one-
bit CS framework. Since the tightness of B depends on the
number of measurementsmwe expect that tight measurement
matrices A will outperform random measurement matrices
especially for larger m.

4. RESULTS

In this section we provide numerical evidence to highlight the
benefits of using tight frames as measurement matrices for
one-bit compressed sensing.
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Fig. 1: Average correlation |xHx?| between correct and re-
covered target reached over 5000 experimental runs for N =
128 and s = 20. The tight and incoherent approaches almost
completely overlap.

4.1. One-bit CS recovery

In the first experimental setting the goal is to recover a sparse
signal x? ∈ RN generated at random using tight measure-
ment matrices A.

The unknown signals x? are s-sparse and they are gener-
ated by selecting uniformly at random the support and then
drawing the entries from the standard Gaussian distribution.
Finally, the signals are normalized by placing them on the unit
hypersphere, i.e., ‖x?‖2 = 1.

The measurement matrices are generated as follows. The
random measurement matrix is generated by drawing entries
from the standard Gaussian distribution. Each measurement
(row of A) is normalized separately. The tight measurement
matrix is generated randomly. Both measurement matrices
are normalized such that they have equal Frobenius norm.

Since the target signals x? and the recovered signals x
are both normalized in energy we chose as performance in-
dicator the dot product between them, i.e., |xHx?|. Figure
1 shows the performance of `1 [11] and binary iterative hard
thresholding (BIHT) [13] recovery using both types of mea-
surement matrices. Using a tight frames always yields (on
average) better performance while the performance gap to the
random measurements increases with larger m, as predicted
in the previous section. In general, the `1 based approach per-
forms better than BIHT but the performance gap is reduced
with larger m and the tight measurements. We also compare
against measurement matrices that are highly incoherent de-
signed via the method in [19] that creates frames with co-
herence, in increasing order of m: 0.2099, 0.1308, 0.0910,
0.0645 and 0.0414 (for m = 128 we have a full orthogo-
nal A). As shown in [10], the incoherence does not play a
crucial role in improving the MSE performance. Note that
since [19] is creating highly incoherent frames (approaching
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Fig. 2: Average correlation |xHx?| between correct and target
recovered by `1 minimization reached over 5000 experimen-
tal runs for N = 100, s ∈ {5, 20} and measurements (12).
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Fig. 3: Average correlation |xHx?| between correct and target
recovered by `1 minimization reached over 1000 experimen-
tal runs for N = 100, m = 55, s ∈ {5, 20} for various SNR
levels and measurements (12).

the Welch bound), these frames are very close to being tight.
This explaining the small recovery differences between the
tight and incoherent approaches and the performance over-
lap between the tight and incoherent measurement matrices
in Figure 1. Indeed, incoherent frames are important when
support recovery results are called upon. Unfortunately, our
variable

[
x r

]T
is not sparse in general.

4.2. One-bit CS recovery with constrained measurements

In this section we show the effectiveness of tight frames when
dealing with complex value data and with an additional con-
straint of selecting the measurements from a predefined set.

Consider the one-bit measurements given by:

ȳ = sign(Ax + n), (11)

where sign is the signum function applied component-wise
and separately to the real and imaginary parts and n ∼
N (0, σ2I) is Gaussian white noise. One-bit CS recovery with
noisy measurements has been studied for example in [20].

Considering now that the possible measurements have the
following structure:

aH(θ) =
[
ej

1−N
2 c ej(

1−N
2 +1)c . . . ej

N−1
2 c
]
, (12)

with c = π cos(θ). Our problem is to recover the transmit-
ted signal x from the one-bit measurements ȳ obtained via
measurement vectors like a(θi), i = 1, . . . ,m.

We randomly generate instances of sparse complex valued
targets x? ∈ CN×1 whose entries are drawn from a standard
Gaussian distribution and whose support is chosen uniformly
at random. These targets are placed on the unit hypersphere
and then try to recover them via (5) using three approaches for
choose the a(θi) which will work as measurement vectors:

• Tight a(θ): the measurements are chosen randomly but
such that they are orthogonal to each other, i.e., they
form a tight frame.

• Random a(θ): the measurements are randomly selected
with an angle θ chosen uniformly from a fine grid.

• Random: the entries of the measurement matrix are
sampled from a Gaussian distribution and then normal-
ized to match the energy of the previous approaches.

The possible set of measurements is made of the vec-
tors defined in (12) evaluated for θ on a fine grid of points
0 ≤ θk < 2π for k = 1, . . . ,K. In these experimental set-
tings we chose K = 104. For N = 100 we show in Figure
2 the recovery results for two sparsity levels s: the correla-
tion of the computed solution, after normalization, x with the
known correct x?, i.e., |xHx?|, and the average error in the
support recovery. Due to the normalization of x and x? the
correlation of the two is an indication of the mean squared
error. Again, the tight measurement matrices always perform
better on average than the random counterparts.

In the last Figure 3 we show the effects of noise on the re-
covery performance. With low SNR there is little difference
between the tight and random measurement matrices while
with higher SNR the gap increases. Tight frames provide bet-
ter performance at all SNR levels.

5. CONCLUSIONS

In this paper we show that unit norm tight measurement ma-
trices provide lower reconstruction errors when dealing with
sparse approximation algorithms in the context of one-bit
compressed sensing. We provide both a theoretical argument
and numerical example to showcase the benefits of unit norm
tight measurement matrices.
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