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ABSTRACT

Phaseless super-resolution is the problem of reconstructing
a signal from its low-frequency Fourier magnitude measure-
ments. It is the combination of two classic signal processing
problems: phase retrieval and super-resolution. Due to the ab-
sence of phase and high-frequency measurements, additional
information is required in order to be able to uniquely recon-
struct the signal of interest.

In this work, we use masks to introduce redundancy in the
phaseless measurements. We develop an analysis framework
for this setup, and use it to show that any super-resolution al-
gorithm can be seamlessly extended to solve phaseless super-
resolution (up to a global phase), when measurements are ob-
tained using a certain set of masks. In particular, we focus
our attention on a robust semidefinite relaxation-based algo-
rithm, and provide reconstruction guarantees. Numerical sim-
ulations complement our theoretical analysis.

Index Terms— Phaseless super-resolution, masks, mini-
mum separation, semidefinite relaxation.

1. INTRODUCTION

In many measurement systems, the magnitude-square of the
Fourier transform is the measurable quantity. For example, in
optics, detection devices like CCD cameras and photosensi-
tive films measure the photon flux, which is proportional to
the magnitude-square of the Fourier transform of the under-
lying signal. The problem of reconstructing a signal from its
phaseless Fourier measurements is known as phase retrieval.
This reconstruction problem occurs in many areas, such as
optics [1], X-ray crystallography [2] and astronomical imag-
ing [3]. We refer the readers to [4, 5] for a survey of classic
approaches. Recent surveys can be found in [6, 7].

In the aforementioned applications, it is often very dif-
ficult to obtain high-frequency measurements due to physi-
cal limitations. For example, in optics, there is a fundamen-
tal resolution limit due to diffraction. We therefore consider
the problem of phaseless super-resolution, which is the prob-
lem of reconstructing a signal from its low-frequency Fourier
magnitude measurements.

In order to solve phaseless super-resolution, it is necessary
to overcome the well-known uniqueness and algorithmic is-
sues of phase retrieval [12]. In this regard, popular approaches
include sparsity prior [13–17] and additional magnitude-only
measurements (e.g., masks [18–20], STFT [21, 22]). In this
work, we use masks and obtain additional structured measure-
ments.

Super-resolution, which is the problem of reconstructing
a signal from its low-frequency Fourier measurements, has a
rich history and a wide variety of techniques have been pro-
posed [8–11]. In this work, we show that any super-resolution
algorithm can be extended to solve phaseless super-resolution
(up to a global phase), when measurements are obtained us-
ing three particular masks. Consequently, k-sparse signals
can be reconstructed from 6k + 3 low-frequency phaseless
measurements in the noiseless setting. We also develop a ro-
bust semidefinite relaxation-based algorithm, and show that
signals which satisfy a minimum separation condition can be
provably reconstructed.

Existing work: In [23], a combinatorial phaseless super-
resolution algorithm was proposed to reconstruct sparse sig-
nals. The algorithm has two limitations: (i) In the noiseless
setting, O(k2) measurements are required to reconstruct a k-
sparse signal. (ii) In the noisy setting, the algorithm is unsta-
ble due to error propagation.

The rest of the paper is organized as follows. In Section
2, we mathematically set up the problem of phaseless super-
resolution using masks. The analysis framework, along with
the semidefinite relaxation-based algorithm, is described in
Section 3. Numerical simulations are presented in Section 4.
Section 5 concludes the paper.

Acknowledgement: This work is inspired by ideas in [24].

2. PROBLEM SETUP

Let x = (x[0], x[1], . . . , x[N − 1])T be a complex-valued
signal of length N and sparsity k. For 0 ≤ r ≤ R − 1, let
Dr be an N × N diagonal matrix, corresponding to the rth
mask, with diagonal entries (dr[0], dr[1], . . . , dr[N−1]). Let
Z denote the K × R magnitude-square measurements, such
that the rth column of Z corresponds to the magnitude-square
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of the first K terms of the N point DFT of the masked signal
Drx. We consider the following reconstruction problem:

find x (1)

subject to Z[m, r] =
∣∣〈fm,Drx〉

∣∣2
for 0 ≤ m ≤ K − 1 and 0 ≤ r ≤ R− 1,

where fm is the conjugate of the mth column of the N point
DFT matrix and 〈., .〉 is the standard inner product operator.

Let F denote the N point DFT matrix and FK be the
K × N submatrix of F, constructed by considering the first
K rows. Further, let x0 be the underlying signal and X0 =
x0x

?
0.

3. METHODOLOGY

3.1. Semidefinite relaxation-based reconstruction

Note that (1) is a quadratic-constrained problem. A technique,
popularly known as lifting, has enjoyed success in solving
several quadratic-constrained problems [25, 26]. The steps
to formulate such problems as a semidefinite program (SDP)
are as follows: (i) Embed the problem in a higher dimensional
space using the transformation X = xx?, a process which
converts the problem of recovering a signal with quadratic
constraints into a problem of recovering a rank-one matrix
with affine constraints. (ii) Relax the rank-one constraint to
obtain a convex program.

The matrix we are interested in recovering is both sparse
and low-rank. The most natural objective function to recover
such a matrix is a linear combination of `1 norm and nuclear
norm (same as trace norm for positive semidefinite matrices).
Hence, we consider the following convex program:

minimize ‖X‖1 + λ trace(X) (2)
subject to Z[m, r] = trace( D?

rfmf?mDrX )

for 0 ≤ m ≤ K − 1 and 0 ≤ r ≤ R− 1,

X < 0,

for some regularizer λ.

3.2. Analysis Framework

Based on intuitions from compressed sensing, for X0 = x0x
?
0

to be the unique optimizer of (2), one would expect roughly
O(k) generic measurements to be sufficient. However, in
[27,28], it is shown that at leastO(min (k2, N)) generic mea-
surements are necessary. For a discussion on this square-root
bottleneck, we refer the readers to [29].

In order to overcome this bottleneck, inspired by ideas
in [24], we first focus our attention on the constraint set of
(2). For each r, let (sr[0], sr[1], . . . , sr[N − 1])T denote the
N point DFT of the vector (dr[0], dr[1], . . . , dr[N−1])T and

for each l, let Diag(fl) be an N × N diagonal matrix with
diagonal entries fl. We have the following relationship:

f?mDr =

N−1∑
l=0

sr[l] f
?
mDiag(fl)

 .

Since f?mDiag(fl) = f?m−l, for every m and r, the aforemen-
tioned expression can be rewritten as

f?mDr =

N−1∑
l=0

sr[l]f
?
m−l =

N−1∑
l=0

sr[l]e
?
m−lF,

where em is the mth column of the identity matrix.
Suppose the masks are chosen such that sr[l] = 0 for

every l ≥ L, for some parameterL. In theL−1 ≤ m ≤ K−1
regime, we can rewrite trace(D?

rfmf?mDrX) as:

trace


L−1∑
l=0

s?r [l]em−l

L−1∑
l=0

sr[l]e
?
m−l

FKXF?K

 .

(3)
By considering such measurements from a sufficient number
of carefully chosen masks, if we ensure that (2) has only one
positive semidefinite feasible matrix (which will be rank-one
as FKX0F

?
K is feasible), then the phaseless super-resolution

problem reduces to the problem of reconstructing X0 from
Y = FKX0F

?
K . This is equivalent to the problem of recon-

structing x0 from eiφFKx0. Hence, by using such masks, any
super-resolution algorithm can be extended to solve phaseless
super-resolution up to a phase.

In particular, the convex program (2) becomes equiva-
lent to the `1 minimization-based convex program proposed
in [10, 11].

3.3. A Specific Example

Let V = {v0, v1, . . . , vk−1} denote the support of x0, i.e., the
set of indices where x0 has a non-zero value. The minimum-
spacing, denoted by ∆(V ), is defined as the closest distance
between any two elements in V , i.e,

∆(V ) = min
0≤i,j≤k−1:i 6=j

∣∣vi − vj∣∣ . (4)

Here, the distance is defined in a cyclic manner. For example,
if N = 100, then the distance between vi = 90 and vj = 10
is 20.

In [20], measurements using three masks, defined by the
following diagonal matrices:

D0 = I, D1 = I + D, D2 = I− iD, (5)

where D is a diagonal matrix with diagonal entries given by

d[n] = ei2π
n
N for 0 ≤ n ≤ N − 1,
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are considered. Using the analysis framework developed in
the previous subsection, we provide the following reconstruc-
tion guarantee for the convex program (2):

Theorem 3.1. The matrix X0 = x0x
?
0 is the unique optimizer

of (2), and therefore x0 can be uniquely reconstructed up to a
phase, if

(i) K ≥ 2N
∆(V )

(ii) The first K values of the N point DFT of x0 are non-
zero

(iii) The masks {D0,D1,D2} defined in (5) are used.

Proof. For the masks defined in (5), the values of sr[l] are as
follows:

s0[l] =

{
1 for l = 0

0 otherwise

s1[l] =

{
1 for l = 0, 1

0 otherwise

s2[l] =


1 for l = 0

−i for l = 1

0 otherwise

Substituting these values in (3), the measurement corre-
sponding to r = 0 and any 0 ≤ m ≤ K − 1 fixes Y [m,m].
Similarly, the measurements corresponding to r = 1, 2 and
any 1 ≤ m ≤ K − 1 fix the values of Y [m − 1,m − 1] +
Y [m− 1,m] + Y [m,m− 1] + Y [m,m] and Y [m− 1,m−
1] + iY [m− 1,m]− iY [m,m− 1] + Y [m,m]. These mea-
surements, combined with the measurements corresponding
to r = 0, fix Y [m− 1,m] and Y [m,m− 1].

Hence, the diagonal and the first off-diagonal entries of
every feasible Y match the diagonal and the first off-diagonal
entries of the matrix (FKx0)(FKx0)?. Since the entries are
sampled from a rank one matrix with non-zero diagonal en-
tries (the first K values of the N point DFT of x0 are non-
zero), there is exactly one positive semidefinite completion,
which is the rank one completion (FKx0)(FKx0)?.

In particular, due to the fact that Y < 0 and FKx0

is non-vanishing, (FKx0)(FKx0)? is the only feasible Y.
As explained in the previous subsection, the reconstruction
problem is reduced to the problem of reconstructing x0 from
eiφFKx0, for some φ.

Since the conditions of Corollary 1.4 in [10] are satisfied,
X0 = x0x

?
0 is the unique optimizer of (2).

In the noiseless setting, a k-sparse signal x0 can be re-
constructed from FKx0 if K ≥ 2k + 1 (e.g., matrix pencil
method [30]). Consequently, if measurements are obtained
using masks defined in (5), then k-sparse signals can be re-
constructed from (2k+1)×3 = 6k+3 low-frequency phase-
less measurements.

Fig. 1: Probability of successful reconstruction for N =
32 and various choices of K and ∆(V ), using masks
{D0,D1,D2} defined in (5).

4. NUMERICAL SIMULATIONS

In this section, we demonstrate the performance of the pro-
posed semidefinite relaxation-based algorithm (2) using nu-
merical simulations.

We choose N = 32 and evaluate the performance for var-
ious choices of minimum-spacing ∆(V ) and number of low-
frequency measurements K. The masks {D0,D1,D2} de-
fined in (5) are used.

For each choice of ∆(V ) and K, we perform 25 trials us-
ing the parser YALMIP and the solver SeDuMi. For each trial,
a complex signal is randomly generated as follows: Starting
from an empty V , 100 indices in the range 0 and N − 1 are
generated uniformly at random (with repetition) and sequen-
tially added to V as long as the minimum-spacing criterion is
not violated. The signal values in the support are drawn from
a standard complex Gaussian distribution independently. The
probability of successful reconstruction is plotted in Fig. 1.
The black region corresponds to a success probability of 0
and the white region corresponds to a success probability of
1.

If K & N
∆(V ) , then the SDP-based algorithm reconstructs

the signal with very high probability. Theorem 3.1 explains
this behavior when K ≥ 2N

∆(V ) , and hence is off from the
simulations by a factor of ∼ 2. This phenomenon was also
observed in [10].
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5. CONCLUSIONS AND FUTURE DIRECTIONS

We considered the problem of phaseless super-resolution us-
ing masks. We developed an analysis framework for this setup
and used it to show that any super-resolution algorithm can be
extended to solve phaseless super-resolution, when measure-
ments are obtained using a certain set of masks. For a par-
ticular choice of three masks, we argued that order-wise op-
timal number of low-frequency phaseless measurements are
sufficient in the noiseless setting. We also developed a robust
semidefinite relaxation-based algorithm and provided recon-
struction guarantees for signals which satisfy a minimum sep-
aration condition. Numerical simulations are in accordance
with our theoretical predictions.

In this work, we did not consider the impact of measure-
ment noise on signal reconstruction. A theoretical analysis
of the estimation error in the noisy setting is one direction
for future study. A characterization of the performance when
measurements are obtained using various sets of masks is an-
other interesting direction.
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