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ABSTRACT

The standard approach to compressive sampling considers re-
covering an unknown deterministic signal with certain known
structure, and designing the sub-sampling pattern and recov-
ery algorithm based on the known structure. This approach
requires looking for a good representation that reveals the sig-
nal structure, and solving a non-smooth convex minimization
problem (e.g., basis pursuit). In this paper, another approach
is considered: We learn a good sub-sampling pattern based on
available training signals, without knowing the signal struc-
ture in advance, and reconstruct an accordingly sub-sampled
signal by computationally much cheaper linear reconstruc-
tion. We provide a theoretical guarantee on the recovery error,
and show via experiments on real-world MRI data the effec-
tiveness of the proposed compressive MRI scheme.

Index Terms— Compressive sampling, magnetic reso-
nance imaging (MRI), least squares estimation, sub-modular
minimization, statistical learning

1. INTRODUCTION

The standard theory of compressive sampling (CS) consid-
ers recovering an unknown deterministic signal with cer-
tain known structure, and designing sampling and recovery
schemes based on the known structure [11]. For example, if
the unknown signal is known to be sparse, one can measure
it by a sub-sampling matrix satisfying the restricted isometry
property (RIP), and apply basis pursuit to obtain an estimate
of the signal [5, 6]. Similar ideas can be extended to low-rank
matrix recovery [4], and in general signal recovery problems
where the signal structures can be encoded by atomic norms
or other convex functions [2, 8, 10].

Despite its success in many applications, we note that
there are some undesired features of the standard CS theory:

1. The signal structure must be known in advance. This
usually requires seeking for a good signal represen-
tation to reveal the signal structure, a non-trivial task
called dictionary learning [17].
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2. The recovery scheme is computationally expensive.
Typical examples are basis pursuit and the Lasso, which
are both non-smooth convex optimization problems.

While those features seem to be necessary according to
existing literature on CS, in some applications, the real-world
setting can deviate from the standard setting of CS. This cre-
ates an opportunity of getting rid of those undesired features.

We focus on one important observation which the stan-
dard CS theory does not take into consideration—we usually
have training signals, i.e., signals that are given and similar to
the unknown signal in some sense.

In fact, practitioners are indeed applying this learning-
based approach in a naı̈ve way. For example, it is by exam-
ining a large amount of real-world images that we discovered
sparsity or more sophisticated structures, under proper repre-
sentations [3, 7, 15]. Although this naı̈ve learning procedure
can be made rigorous and automated by dictionary learning,
training signals are still required.

In this paper, we propose alternative to compressive sam-
pling, and apply it to compressive magnetic resonance imag-
ing (MRI). The proposed scheme automatically adapts to the
given training signals, without any a priori knowledge on the
signal structure. We highlight the following contributions:

1. We propose a novel statistical learning view point to
the compressive sampling problem, which allows us to
study the effect of training signals.

2. Our compressive MRI scheme is computationally ef-
ficient: The learning procedure can be cast as a com-
binatorial optimization problem, which can be exactly
solved by an efficient algorithm; the recovery algorithm
we consider is simply least-squares (LS) reconstruc-
tion.

3. In contrast to the standard approach using random sub-
sampling patterns [6, 14, 16], our sub-sampling scheme
is fixed given the training signals, and hence simpler for
implementation.

4. We provide a theoretical guarantee on the reconstruc-
tion error, and characterize its dependence on the num-
ber of training signals.
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5. We show via experiments on real MRI images that
the reconstruction error performance of the proposed
scheme is comparable to the performance using a
finely-tuned sub-sampling pattern given in [14].

2. REVIEW OF EXISTING APPROACHES

Compressive MRI is essentially a linear inverse problem. The
goal is to recover an unknown signal x\ ∈ Cp, given a sub-
sampling pattern Ω ⊂ {1, . . . , p} with |Ω| = n for some
n < p, and the outcome of compressive sampling:

y := PΩFx\

whereF : Cp → Cp is the Fourier transform matrix, and PΩ :
Cp → Cn is a linear operator that only keeps entries of Fx\
indexed by Ω. In practice, x\ is usually a 2D or 3D object, and
F should be replaced by the corresponding multidimensional
Fourier transform.

Existing approaches to compressive MRI can be briefly
summarized as follows:

1. Find a wavelet transform matrix Ψ : Cp → Cp, such
that x\ = Ψ−1z\ and z\ possesses certain structure.
For example, the sparsity of z\ and smoothness of x\

were exploited in [14], the tree sparsity of z\ was con-
sidered in [9], and the multi-level sparsity of z\ was
considered in [16].

2. Choose a random sub-sampling pattern Ω and sample
Fx\ accordingly; the probability distribution might be
dependent on the knowledge about the structure of z\

[14, 16].

3. Finally, apply non-linear decoding algorithms to recon-
struct x\. The standard basis pursuit estimator was con-
sidered in [16]. A basis pursuit like estimator minimiz-
ing a linear combination of the `1-norm and the total
variation semi-norm was proposed in [14]. A closely-
related Lasso like estimator with the `1-norm and to-
tal variation semi-norm penalization was considered in
[19]. A similar Lasso like estimator with one additional
penalization term for tree sparsity was introduced by
[9].

We note that existing approaches essentially follow the
standard theory of compressive sampling, and hence inherit
the two undesired features which we mentioned in the intro-
duction.

3. LEARNING DATA TRIAGE

The standard approach to compressive MRI models x\ as a
deterministic unknown signal. Here we adopt another mod-
eling philosophy: We assume that x\ is a random vector fol-
lowing some unknown probability distribution P, and we have

access to m training signals x1, . . . , xm ∈ Cp, which are in-
dependent and identically distributed random vectors also fol-
lowing P, and are independent of x\. Note that this is different
from Bayesian compressive sampling [13], as P is unknown
in our model.

We consider LS reconstruction. For any given sub-
sampling pattern Ω, the estimator has an explicit form:

x̂Ω = arg min
x

{
‖y − PΩFx‖22 : x ∈ Rp

}
= FHPT

Ω y.

Once the reconstruction scheme is fixed, the only issue is to
choose Ω that optimizes the resulting estimation performance.

We show in Section 8.1 that for any given Ω, the expected
normalized reconstruction error satisfies

E
∥∥x̂Ω − x\

∥∥2

2

‖x\‖22
= 1− E fΩ(x), (1)

where the expectations are with respect to x\ ∼ P and x ∼ P,
respectively, and we define

fΩ(x) :=
‖PΩFx‖22
‖x‖22

for convenience. This implies that the optimal sub-sampling
pattern Ω, denoted by Ωopt., is given by any solution of the
following combinatorial optimization problem:

Ωopt ∈ arg max
Ω
{E fΩ(x) : Ω ⊂ {1, . . . , p} , |Ω| = n} . (2)

However, since P is assumed unknown, the optimization
problem is not tractable.

Motivated by the idea of empirical risk minimization in
statistical learning theory [18], we make use of the training
signals and approximate Ωopt. via any solution of the opti-
mization problem:

Ωm ∈ arg max
Ω

{
Êm fΩ(x) : Ω ⊂ {1, . . . , p} , |Ω| = n

}
(3)

where Êm denotes the expectation with respect to the empiri-
cal measure, i.e.,

Êm fΩ(x) :=
1

m

m∑
i=1

‖PΩFxi‖22
‖xi‖22

.

This optimization problem is tractable, because we only
need to solve it for any realization of the training signals
x1, . . . , xm. Note that then Êm fΩ(x) depends on x1, . . . , xm
and is random, and so does Ωm.

The overall systems is summarized as follows:

1. Find a sub-sampling pattern Ωm by (3).
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2. Sub-sample x\ using Ωm and obtain the measurement
outcome

y := PΩm
Fx\.

3. Recover x\ by

x̂ := FHPT
Ωm
y.

On Computing Ωm: The optimization problem (3) is modu-
lar, and hence can be exactly solved by a simple greedy algo-
rithm [12]: Let φTi be the i-th row of Φ. Compute the values

vi :=
1

m

m∑
i=1

(
φTi xi

)2
,

and set Ωm as the set of indices corresponding to the largest
n vi’s. The computational complexity is dominated by com-
putation of vi’s, which behaves as O(mp2) in general, and
O(mp log p) if Φ is suitably structured, such as the Fourier
and Hadamard matrices.

4. PERFORMANCE ANALYSIS

We analyze the reconstruction error of the proposed learning-
based compressive sampling system.

If we could solve the optimization problem (2), the esti-
mation performance would be given by

E
∥∥x̂Ωopt − x\

∥∥2

2

‖x\‖22
= 1− εP,

where we define

εP := max
Ω
{E fΩ(x) : Ω ⊂ {1, . . . , p} , |Ω| = n} .

Note that εP is a constant for any given P, independent of the
training signals.

Since now the optimization problem (2) is replaced by its
empirical version (3), a reasonable guess is that the estimation
performance would behave as

E
∥∥x̂Ωm − x\

∥∥2

2

‖x\‖22
≤ 1− εP + εm,

for some εm > 0 with high probability (with respect to the
training signals x1, . . . , xm), and εm should converge to 0 as
m→∞. The following proposition verifies this guess.

Proposition 4.1. For any β ∈ (0, 1), we have

εm ≤

√
2

m

[
log

(
p

n

)
+ log

2

β

]
with probability at least 1− β.

This means a size of training signals of the orderO(n log p)
suffices to have small enough εm, with high probability. We
note that this is a worst-case guarantee, as it is distribution-
independent. In practice, m can be much smaller.

6.25% sampling 12.5% sampling 25% sampling

Fig. 1. First row: the subsampling maps of the tuned random
variable sampling scheme [14]. Second row: the maps given
by our learning-based approach.

5. NUMERICAL RESULTS

We use a 3-dimensional dataset of raw knee-images data
given in k-space.1 We first take an inverse Fourier transform
along the z-axis and eliminate low energy the z−slices that
are close to the boundary of the datacube. These are noise-
like slices that do not exhibit any knee feature as they are
close to the skin of the patient. We then investigate subsam-
pling schemes in the 320 × 320 x − y Fourier plane, which
corresponds to compressive sampling for each z-slice.

We pick the first 10 of the patients in the given dataset for
training and test the learned subsampling maps on the remain-
ing 10 patients. We compare our learning based approach
to the variable density function proposed by [14], which is
parametrized by the radius of fully sampled region, r, and the
polynomial degree, d. We tune the values of r and d so that
they yield the highest average PSNR on the training data.

Figure 1 illustrates the best performing randomized in-
dices and our learned set of indices in the x − y plane of
the k-space. Both the variable density approach [14] and our
learning-based approach concentrates its sampling budget on
the low frequencies, however the latter is endowed with the
capability to adapt its frequency selection to the frequency
content of the training signals instead of assuming a circu-
larly symmetric selection.

Table 1. Average PSNR on the test data

Indices Sampling rate
6.25% 12.50% 25%

Best-n approx. 25.29 dB 26.36 dB 28.35 dB
Lustig et al. 24.51 dB 25.11 dB 26.05 dB
This work 24.66 dB 25.18 dB 26.12 dB

1Available at http://mridata.org/fullysampled
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learning-based

Lustig et al.

25% 12.5% 6.25%

Fig. 2. MRI reconstructions of both schemes at different sub-
sampling rates for a knee slice of patient #13, whose fully
sampled reconstruction is shown on the top left.

Table 1 shows the performance of both approaches on the
test data, in addition to the error lower-bounds obtained by
the best n-sample approximations with respect to the Fourier
basis. It appears that the learning based approach slightly out-
performs the randomized variable density based approach.

However, the slight numerical improvements are actually
accentuated when we look at the details of reconstructions,
shown in Figure 2 for the test Patient #13. It is clear that
the learning-based reconstructions provide more details espe-
cially for 6.25% and 12.5%.

6. DISCUSSIONS

The essential idea of the learning-based approach can be sum-
marized as follows: Fix a decoder, and find the optimal sub-
sampling pattern that minimizes the corresponding expected
recovery error, which can be approximated by empirical risk
minimization. The performance is essentially determined by
the distribution of signal ensemble.

In this paper, we consider the linear decoder for compu-
tational efficiency, and it works well on the ensemble of MRI
images. For other signal ensembles, it is possible to have a
better recovery error performance by a non-linear decoder,
such as basis pursuit or the Lasso, and realize a trade-off be-
tween computational complexity and recovery performance.
Note that the idea of the learning-based approach still applies,
while the empirical risk minimization formulation for choos-
ing the sub-sampling pattern should be modified accordingly
given the decoder. We are currently working in this research
direction.
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8. PROOFS

8.1. Proof of (1)

In fact, the equality holds deterministically, as∥∥x̂Ω − x\
∥∥2

2

= ‖x̂Ω‖22 − 2
〈
x̂Ω, x

\
〉

+
∥∥x\∥∥2

2

=
∥∥FHPT

Ω PΩFx\
∥∥2

2
− 2

〈
FHPT

Ω PΩFx\, x\
〉

+
∥∥x\∥∥2

2

=
∥∥PΩFx\

∥∥2

2
− 2

∥∥PΩFx\
∥∥2

2
+
∥∥x\∥∥2

2
.

In the third equality, we used the fact that AA†A = A for any
matrix A and its Moore-Penrose generalized inverse A†, by
setting A := PΩF .

8.2. Proof of Proposition 4.1
It suffices to choose εm such that with probability at least
1− β,

∆m := E fΩopt(x)− E fΩm
(x) ≤ εm.

We note that

∆m =
(
E fΩopt(x)− Êm fΩopt(x)

)
+(

Êm fΩopt(x)− Êm fΩm
(x)
)

+(
Êm fΩm

(x)− E fΩm
(x)
)
.

The second summand on the right-hand side cannot be posi-
tive by definition. Then we have

∆m ≤ 2 max
Ω

{∣∣∣Êm fΩ(x)− E fΩ(x)
∣∣∣ : Ω ∈ A

}
where A := {Ω : Ω ⊂ {1, . . . , p} , |Ω| = n}.

As the random variables fΩ(x) are bounded (0 ≤ fΩ(x) ≤
1), we can use Hoeffding’s inequality and the union bound to
obtain an upper bound of ∆m that holds with high probability,
as in [1, B.3].
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