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ABSTRACT

In this paper, we propose a method for estimating the sparsity
of a signal from its noisy linear projections without recovering
it. The method exploits the property that linear projections
acquired using a sparse sensing matrix are distributed ac-
cording to a mixture distribution whose parameters depend
on the signal sparsity. Due to the complexity of the exact
mixture model, we introduce an approximate two-component
Gaussian mixture model whose parameters can be estimated
via expectation-maximization techniques. We demonstrate
that the above model is accurate in the large system limit
for a proper choice of the sensing matrix sparsifying param-
eter. Moreover, experimental results demonstrate that the
method is robust under different signal-to-noise ratios and
outperforms existing sparsity estimation techniques.

Index Terms— Compressed sensing, Gaussian mixture
models, sparse matrices, sparsity

1. INTRODUCTION

Compressed Sensing (CS) [1, 2] is a novel signal acquisition
technique based on the recovery of an unknown signal from
a small set of linear measurements. The main result of CS is
that if a signal having dimension n is known to be sparse, i.e.,
it can be well approximated by only k � n nonzero entries
in a suitable basis, then it can be efficiently recovered using
only m� n linear combinations of the signal entries.

Most of the applications of CS usually assume that the
sparsity k is known before acquiring the signal. However, in
many practical settings this is not always the case. Some sig-
nals may have a time-varying sparsity, as in spectrum sensing
[3], or spatially-varying sparsity, as in the case of block based
acquisition of images [4]. Since the number of linear mea-
surements required for the recovery depends on the sparsity
degree of the signal [5], the knowledge of k is crucial for a
CS system. Also, many recovery algorithms require to know
the sparsity of the signal for an optimal tuning of parame-
ters. For example, Lasso techniques [6] require to choose a
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parameter λ which is related to k [7], whereas for greedy al-
gorithms, such as Orthogonal Matching Pursuit (OMP) [8] or
Compressive Sampling Matching Pursuit (CoSaMP) [9], the
number of iterations is bounded by k. Another problem is
that in some cases may not be immediately clear whether the
signal is actually sparse and which is the correct sparsifying
basis [10].

Due to the deployment of many practical CS systems, the
problem of estimating the sparsity degree has begun to be rec-
ognized as a major gap between theory and practice [11, 12]
and the literature on the subject is very recent [10, 13, 14].
In [10], the sparsity of the signal is lower-bounded through
the numerical sparsity, i.e., the ratio between the `1 and `2
norms of the signal, where these quantities can be estimated
from random projections obtained using Cauchy distributed
and Gaussian distributed matrices, respectively. However,
measurement taken with Cauchy distributed matrices cannot
be used later for signal reconstruction. In [15], the authors
propose to estimate the sparsity of an image before its ac-
quisition, by calculating the image complexity. However, the
proposed metric is based on the image pixel values, forcing
to calculate a separate estimation that does not depend on the
measurements.

In order to deal with an unknown sparsity degree, some
authors propose sequential acquisition techniques, in which
the number of measurements is dynamically adapted until a
satisfactory reconstruction performance is achieved [16, 17,
18, 19]. Since these methods require to solve a minimiza-
tion problem at each newly acquired measurement, they may
prove too complex when the underlying signal is not sparse,
or if one is only interested in assessing the sparsity degree of
a signal under a certain basis without reconstructing it.

In this paper, we propose a method for estimating the
sparsity degree of a signal directly from its linear measure-
ments. The method is based on projections obtained using
a γ-sparsified random matrix and exploits the fact that, un-
der this kind of matrices, the measurements are distributed
according to a mixture whose parameters depend on k. The
proposed method extends the algorithm in [13], which works
only in the case of exactly k-sparse signals, to the case of
noisy sparse signals or only compressible signals. The fun-
damental idea is to approximate the measurements model
by a two-component Gaussian mixture model (2-GMM),
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whose parameters can be easily estimated via expectation-
maximization techniques. As a major contribution, we prove
that there is a regime of behavior, defined by the scaling of
the measurement sparsity γ and the sparsity k, where this
approximation is accurate. An interesting property of the
proposed method is that measurements acquired using a γ-
sparsified random matrix also enable signal reconstruction,
with only a slight performance degradation with respect to
dense matrices [20, 21].

2. PROBLEM FORMULATION

In this paper, we consider the following affine system

y = Ax+ η, (1)

where x ∈ Σk := {x ∈ Rn : |supp(x)| = k << n} is an
unknown deterministic signal x ∈ Rn with exactly k nonzero
entries (we refer to k as the signal sparsity), y ∈ Rm is the
observation vector, A ∈ Rm×n is the sensing matrix, and η ∈
Rm is a Gaussian noise N (0, σ2I). Our goal is to estimate k
from the measurements y without recovering the signal x.

Since we are trying to estimate the signal sparsity from
noisy measurements, we expect that the performance of any
sparsity estimator will depend on λ = mini∈supp(x) |xi|. Our
analysis considers γ-sparsified matrices [20], in which the en-
tries of the matrix A are independently and identically dis-
tributed according to

Aij =

{
N (0, 1γ ) w.p. γ,
0 w.p. 1− γ.

(2)

It is well known [20] that if γk = Θ(1) and λ2k = Θ(1), then
at least max{Θ(k log(n/k)),Θ(k log(p − k)/ log k)} mea-
surements are necessary for estimating the support of the sig-
nal.

For simplicity of exposition and in order to emphasize the
relevant parameters in the estimation problem, we consider
the restricted class of signals introduced in [20] (Restricted
ensemble A): X = {x ∈ Σk : |xi| = λ, ∀i ∈ supp(x)}.
However, our analysis can be extended to any k-sparse sig-
nal. With the above assumptions, any measurement yi =∑
j∈[n]Aijxj + ηi is a random variable whose distribution

is a mixture of k + 1 Gaussians

yi ∼ N (0, αs) w.p. ps =

(
k

s

)
γs(1− γ)k−s,

αs = λ2s/γ + σ2 = sα1 − (s− 1)α0,

(3)

with s ∈ {0, . . . , k} denoting the number of nonzero entries
of i-th row in A colliding with the signal support. Given the
set of m independent and identically distributed samples y =
(y1, . . . , ym)>, the corresponding log-likelihood function is
given by

log f(y|α, k) =

m∑
i=1

log

k∑
s=0

psφ(yi|αs)

where φ(yi|αs) = 1√
2παs

exp
(
−x2/(2αs)

)
.

In this paper the sparsity evaluation is recast into the prob-
lem of estimating the number of mixture components and pa-
rameters from the collection of samples (y1, . . . , ym). A nat-
ural solution to our estimation problem would be to consider a
ML estimation (see [22]). Let z = (zis)i∈[m],s∈{0}∪[k] be the
matrix whose entry zis is the hidden variable, which is equal
to one if and only if component s produced measurement i
and zero otherwise. Note that each column contains exactly
one entry equal to one. Let f(y, z) be the joint distribution
of y and hidden variables z and consider the log-likelihood
function

L(y, z|α, k) := log f(y, z|α, k)

=

m∑
i=1

k∑
s=0

zis log (psφ(yi|αs)) ,

where the last equality is true since zis is zero for all but one
term in the inner sum. The ML solution prescribes to choose
k ∈ {0, . . . , n} and α ∈ R2

+ such that

(α̂ML, k̂ML) = arg max
k,α

Ez [L(y, z|α, k)] . (4)

As already noted, even if the signal sparsity k were known,
the maximum likelihood problem (4) would be a typical es-
timation problem for a finite mixture distribution and would
not admit a closed-form solution, and the computational
complexity of (4) would be practically unfeasible. One pos-
sible approach is to resort to the well known Expectation-
Maximization (EM) algorithm in [22]. This is a powerful
tool for finding ML solutions to problems involving observed
and hidden variables which is known to converge to a local
maximum of the likelihood.

3. ITERATIVE SPARSITY ESTIMATION BASED ON
EXPECTATION-MAXIMIZATION

The EM algorithm can be adapted to estimate also the number
of mixture components and, consequently, the signal sparsity.
For brevity we shall only report the final equations. Start-
ing from initial values k(0), α0(0), α1(0), and computing for
s = 2, . . . , k(0) the parameters ps(0), αs(0) by (3), at each
iteration we need to update the posterior probabilities

πis(t+ 1) = ps(t)φ(yi|αs(t))/
k(t)∑
`=0

p`(t)φ(yi|α`(t))

and the mixture parameters p0(t+ 1) =
∑m
i=1 πi0(t+ 1)/m,

k(t+ 1) = dlog (p0(t+ 1))/log(1− γ)e, and α0(t+ 1),
α0(t+ 1) by solving

min
α0,α1

k(t+1)∑
s=0

m∑
i=1

(
πis(t+ 1)y2i
αs(α0, α1)

+ πis(t+ 1) logαs(α0, α1),

)
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where αs(α0, α1) = sα1−(s−1)α0. Finally ps(t+1), αs(t+
1) are given by (3) with s = 2, . . . , k(t+ 1).

However, the EM implementation suffers from the fol-
lowing limitations. (a) There is not a closed formula to
update the variances, due to the fact that the variances of the
mixture components are dependent. (b) The computational
complexity of the algorithm depends on the signal sparsity:
as k increases, the number of parameters to update gets
larger. Moreover we are not interested in a complete clas-
sification/clustering of the data but only to discriminate the
measurements that are produced by noise in order to estimate
the signal sparsity.

3.1. 2-GMM approximation for large system limit

Our main goal is to show that the EM presented in the pre-
vious section can be simplified in the large system limit as
n, k →∞. The next theorem reveals that there is a regime of
behavior, defined by the scaling of the measurement sparsity
γ and the signal sparsity k, where the measurements can be
approximately described by a two-component Gaussian mix-
ture model. We state this fact formally below. Recall that,
given two distributions f, g their Kolmogorov distance is de-
fined by

‖f − g‖K = sup
a∈R

∣∣∣∣∫ a

−∞
f(x)dx−

∫ a

−∞
g(x)dx

∣∣∣∣ .
Theorem 1. Let us consider the sequence of distribution
functions fk(y) =

∑k
s=0 psφ(y|αs). If γk = τ and λ2k = χ,

then
lim
k→∞

‖fk − f?‖K ≤ Cτ

where C is a constant (independent of parameters τ ) and

f?(y) = e−τφ
(
y|σ2

)
+ (1− e−τ )φ

(
y
∣∣∣σ2 +

χ

1− e−τ

)
The proof of Theorem 1 can be obtained by re-working

on the Jensen’s inequality and is omitted for brevity. The
quantile-quantile plot in Figure 1 compares a sample of data
generated by k-GMM (vertical axis) with parameter τ = γk
to a data sample generated by 2-GMM (horizontal axis). It
should be noticed that when τ is small (left), the points in the
picture approximately lie on 45 degree reference line. This
linearity suggests that the compared distributions are simi-
lar. If τ increases then the points follow a different pattern,
suggesting that the data samples from k-GMM are not well
approximated by the 2-GMM probability model. This con-
firms that sparsifying the measurement ensemble has asymp-
totic effect in the accuracy of the approximation as derived in
Theorem 1.

In the regime γk = Θ(1) and λ2k = Θ(1), using the ap-
proximation in Theorem 1, we recast the problem of inferring
the signal sparsity as the problem of estimating the parame-
ters of a two-component Gaussian mixture whose joint distri-
bution of y and hidden variable z is given by f(y, z|α, β, p) =
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Fig. 1. Illustration of the 2-GMM approximation: quantile-
quantile plot for k-GMM against 2-GMM data samples for
τ = 1 (left) and τ = 5 (right).

pzφ(y|α) + (1 − p)(1 − z)φ(y|β) with z ∈ {0, 1}. Starting
from an initial guess of mixture parameters α(0), β(0), p(0),
Algorithm 1 computes, at each iteration, the posterior distri-
bution πi(t) = P(zi = 1|α(t), β(t), p(t)) (E-Step) and re-
estimate the mixture parameters (M-Step) until a stopping cri-
terion is satisfied. Finally the estimation of the signal sparsity
is provided by k̂ = log(pfinal)/ log(1− γ).

Algorithm 1 Sparsity estimation via 2-GMM approximation
Require: Measurements y ∈ Rn, parameters γ, k

1: Initialization: α(0), β(0), p(0)
2: for t = 0, 1, . . . , StopIter do
3: E-step: compute the posterior probabilities

πi(t+ 1) =

p(t)√
α(t)

e−y
2
i /(2α(t))

p(t)√
α(t)

e−y
2
i /(2α(t)) +

1−p(t)√
β(t)

e−y
2
i /(2β(t))

4: M-Step: compute the mixture parameters

p(t+ 1) =

∑m
i=1 πi(t+ 1)

m
, k(t+ 1) =

log
(∑m

i=1 πi(t+1)

m

)
log(1− γ)

α(t+ 1) =

∑m
i=1 πiy

2
i∑m

i=1 πi
, β(t+ 1) =

∑m
i=1(1− πi)y2i∑m
i=1(1− πi)

.

5: end for

The following convergence theorem can be proved.

Theorem 2. The sequence of signal sparsity estimations k(t)
generated by Algorithm 1 converges to a limit point.

For brevity, we omit the proof, which can be readily de-
rived from standard convergence arguments for dynamical
systems [22].

4. SIMULATIONS

In this section we test Algorithm 1 in different settings and
compare it to the algorithm proposed by Lopes in [10], and to
the sparsity estimator in the noise-free case proposed in [13],
referred to as oracle estimator.

In the first experiment, we set k = 200, k
m ∈ [0.1, 1],

σ = 1. We choose the nonzero values of x uniformly at ran-
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Fig. 2. Mean relative error for k = 200, xi ∈ {0,±λ}

dom in {−λ, λ}. The energy of x is then λ2k, which is equal
to the mean energy of y with sensing matrix as in (2). We
then define the mean signal-to-noise ratio as SNR= λ2k/σ2,
and we set γ = SNR(dB)

5·103 , where SNR(dB) indicates the SNR
expressed in dB. This choice is based on empirical evidence
suggesting a more stable behavior when γ depends on the
SNR.

We evaluate the performance in terms of mean relative er-
ror, defined as: MRE = |k̂ − k|/k, where k̂ is the estimated
sparsity. We start 2-GMM by an M-step on πi(0) = 1

2 for any
i = 1, . . . ,m. The procedure is stopped at the first time t0
such that |k(t0)−k(t0−1)| < 10−2, and k̂ taken as the clos-
est integer to k(t0) (in all our simulations, a few tens of itera-
tions were sufficient to get convergence). In Figure 2, we plot
the average results over 500 different runs. The performance
curves, obtained with SNRs from 10 to 30 dB, show that 2-
GMM performs better than [10], and, as a difference from it,
gets closer to the oracle estimator as the SNR increases.

We remark that the signal-to-noise ratio for Lopes’s
method in principle cannot be evaluated, while in practice
it is always very high. This is due to the use of a sensing
matrix which is partially generated according to a Cauchy
distribution, for which variance is infinite. Such observa-
tion explains the behavior of Lopes’s performance, which
is substantially invariant to the SNR. On the one hand, this
means more robustness to noise, on the other hand, it causes
a remarkable distance from the oracle even for high SNRs.

In Figure 3, in order to evaluate the algorithm robustness
to different signal distributions, we repeat the first experiment
using Gaussian signals, that is, the nonzero xis are generated
according to a zero-mean Gaussian distribution, and normal-
ized so that their energy is still equal to λ2k. In this case,
we set γ = SNR(dB)

2·104 . In this Gaussian framework, accuracy
is lower as x might have some small entries easily confused
with noise. However, also in this experiment we can appre-
ciate a gain with respect to Lopes’s algorithm and a natural
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Fig. 3. Mean relative error for k = 200, x Gaussian

improvement as the SNR increases. Hence, numerical results
suggest that the proposed method can be employed also for
signals not in {0,±λ}.

We underline that the performance gain with respect to
Lopes’s method is obtained with no substantial increase of
complexity: Lopes’s algorithm consists in the computation of
a mean and a median over the m-length measurement vector;
each EM step in 2-GMM requires a number of computations
of order m, and, as already said, we observed that few tens
of iterations were sufficient to converge. In conclusion, the
order of complexity for Lopes algorithm and 2-GMM is com-
parable.

Regarding the choice of γ, we remark that in many practi-
cal situations the SNR of the system is approximately known,
hence it makes sense to design γ based on it. On the other
hand, γ should be rescaled with k when k increases, to keep
τ finite (see Theorem 1). This seems contradictory as the es-
timate of k is our ultimate goal; however, one can solve the
issue by rescaling γ with respect to the length n, which in
most realistic settings is expected to scale with k.

5. CONCLUSIONS

This paper has proposed an iterative algorithm for estimation
of the signal sparsity starting from compressive and noisy
projections via γ-sparsified random matrices. This iterative
procedure is obtained by modeling the projections using an
approximate 2-GMM. The main theoretical contribution in-
cludes the precise characterization of 2-GMM for a specific
choice of the parameter γ. Numerical results confirm that
2-GMM outperforms methods known in the literature, with
no substantial increase of complexity, and works for different
signals models. Future work will be devoted to better under-
stand the relationship between γ and other parameters in the
system, like the SNR, and to derive theoretical guarantees for
more general signal models.
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