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ABSTRACT

While several real world signals, such as speech, image and sen-
sor network data, are modeled as hidden Markov sources (HMS)
for recognition and analysis applications, their typical compression
exploits temporal correlations by modeling them as simple (non-
hidden) Markov sources. However, the inherent hidden Markov
nature of these sources implies that an observed sample depends, in
fact, on all past observations, thus rendering simple Markov model-
ing suboptimal. Motivated by this realization, previous work from
our lab derived a technique to optimally quantize and compress
HMS. In this paper we build on, and considerably extend, these re-
sults to the problem of scalable coding of HMS. At the base layer, as
proposed earlier, the approach tracks an estimate of the state proba-
bility distribution and adapts the encoder structure accordingly. At
the enhancement layer, the state probability distribution is refined
using available information from past enhancement layer recon-
structed samples, and this refined estimate is further combined with
quantization information from the base layer, to effectively charac-
terize the probability density of the current sample conditioned on
all available information. We update code parameters on the fly, at
each observation, at both the encoder and the decoder and at both
layers. Experimental results validate the superiority of the proposed
approach with considerable gains over standard predictive coding
employing a simple Markov model.

Index Terms— Scalable Coding, Hidden Markov Sources.

1. INTRODUCTION

The Hidden Markov model (HMM) is a discrete-time Markov chain
observed through a memoryless channel. The random process con-
sisting of the sequence of observations is referred to as a hidden
Markov source (HMS). Markov chains are common models for
information sources with memory, and the memoryless channel
is among the simplest communication models. Thus HMMs are
widely used in image understanding and speech recognition [1],
source coding [2], communications, information theory, economics,
robotics, computer vision and several other disciplines. Note that
most signals modeled as Markov process are usually captured by
imperfect sensors and are hence contaminated with noise, i.e., the
resulting sequence is in fact an HMS. HMS is a special case of the
broader family of multivariate Markov sources, which has been a
focus of recent research, notably in the context of parameter esti-
mation [3, 4]. Despite the importance of this model, there has been
very limited work on quantizing HMS observations optimally and
most practical applications simply assume a (non-hidden) Markov
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Fig. 1. A continuous emission hidden Markov source with N states.

model for encoding these signals. The closest information theoretic
work was on indirect rate distortion problems [5, 6], wherein, in-
stead of the observations, the source hidden behind a layer of noise
is encoded and reconstructed. In an alternative approach, a finite
state quantizer was proposed in [7, 8, 9], but these techniques do not
exploit all the available relevant information. Hence, in a recent pa-
per from our lab [10], an optimal quantization scheme was proposed
for HMS, which exploits all the available information on the source
state. The probability distribution over the states of the underlying
Markov chain captures all the available information and depends on
the entire history of observations. Hence, we proposed to refine,
with each observation, the estimate of the state probability distribu-
tion at both encoder and decoder, and correspondingly update the
coding rule.

This paper focuses on a significant extension of the optimal
HMS quantization paradigm. Advances in internet and communica-
tion technologies, have created an extremely heterogeneous network
scenario with data consumption devices of highly diverse decoding
and display capabilities, all accessing the same content over net-
works of time varying bandwidth and latency. Thus it is necessary
for coding and transmission systems to provide a scalable bitstream
that allows decoding at a variety of bit rates (and corresponding
levels of quality), where the lower rate information streams are
embedded within the higher rate bitstreams in a manner that mini-
mizes redundancy. That is, we need to generate layered bitstreams,
wherein a base layer provides a coarse quality reconstruction and
successive layers refine the quality, incrementally. Scalable coding
with two quality levels, transmits at rate R12 to both decoders and
at rate R2 to only the second decoder.
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Fig. 2. Proposed encoder for the base and the enhancement layer.

The commonly employed technique for scalable coding of
HMS, completely neglects the hidden states and employs a predic-
tive coding approach such as DPCM (i.e., assumes a simple Markov
model) at the base layer, and at the enhancement layer, the base
layer reconstruction error is compressed and transmitted. That is,
the base layer reconstruction is used as an estimate for the original
signal, and the estimation error is compressed in the enhancement
layer. A review of scalable coding techniques for audio and video
signals can be found in [11, 12]. An estimation theoretically optimal
scalable predictive coding technique was proposed in [13], which
accounts for all the information available from the current base layer
and past reconstructed samples to generate an optimal estimate at
the enhancement layer. In this paper we propose a novel scalable
coding technique for HMS, which accounts for all the available
information while coding a given layer. At the base layer, we exploit
all the available information by employing our previously proposed
technique of tracking the state probability distribution at the encoder
and the decoder, and using it to update the quantizers for encoding
the current observation. At the enhancement layer, we again track
the state probability distribution at the encoder and the decoder,
but using the higher quality enhancement layer reconstruction for a
better estimate, and then the enhancement layer quantizer is adapted
to the interval determined by base layer quantization so as to enable
full exploitation of all available information.

The rest of the paper is organized as follows. In Section 2, we
define the problem. In Section 3, we present the proposed method.
We substantiate the effectiveness of the proposed approach with
comparative numerical results in Section 4, and conclude in Section
5.

2. PROBLEM DEFINITION

A hidden Markov source (HMS) is defined by the following set of
parameters (please refer to [14] for more details):

1. Hidden states in the model: Assuming a finite number of
the states, N , the set of all possible states is denoted S =
{S1, S2, . . . , SN}, and the state at time t is denoted by qt.

2. The state transition probability distribution: A = {aij},
where aij = P [qt+1 = Sj |qt = Si], 1 ≤ i, j ≤ N .

3. Observations: The set of observation symbols (or alphabet)
is denoted by V , and in the discrete emission case V =
{v1, v2, · · · , vM}, where M is the cardinality of the obser-
vation alphabet.

4. The observation (emission) probability density function (pdf)
given state Sj , is denoted gj(·), in the continuous emission
case, and the observation (emission) probability mass func-
tion (pmf), B = {bj(vk)}, where bj(vk) = p[Ot = vk|qt =
Sj ] in the discrete emission case, where Ot denotes the emit-
ted observation at time t.

5. The initial state distributions π = {πi} where πi = P [q1 =
Si], 1 ≤ i ≤ N .

Fig. 1 depicts an example of a continuous hidden Markov source
with N states. Clearly in hidden Markov sources, we have access
only to the emitted observation,Ot, and not to the state of the source.

Our objective is to find the best scalable coding scheme for
HMS.

3. PROPOSED METHOD

For optimal scalable coding of HMS, we need to exploit all the avail-
able information while encoding at each layer. To achieve this, we
rely on the important HMS property that the state at time t− 1, cap-
tures all the past information relevant to the emission of the next
source symbol. Specifically, P [Ot = vk|qt−1 = Sj , O1→(t−1)] =
P [Ot = vk|qt−1 = Sj ], which implies that all observations un-
til time t − 1 provide no additional information on the next source
symbol, beyond what is captured by the state of the Markov chain at
time t− 1. Further note that the state of the HMS cannot be known
with certainty. Thus the fundamental paradigm to optimally capture
the correlations with the past is by tracking the state probability dis-
tribution of the HMS.

In this approach, each output of the encoder (quantized observa-
tion) at a given layer is sent into a unit called the state probability
distribution tracking function. This unit estimates the state proba-
bility distribution, i.e., probabilities of the Markov chain being in
each of the states, denoted by p̂. The base layer encoder adapter
unit utilizes these probabilities to redesign the encoder optimally for
the next input sample. At the enhancement layers, there is additional
information of the quantization interval from the lower layers along
with the state probability distribution. Thus the enhancement layer
encoder adapter unit combines both types of available information
to redesign the encoder optimally for the next input sample. Fig. 2
shows the proposed scalable encoder of HMS.

Our objective is to design the state probability distribution track-
ing function and the encoder adapter, given a training set of samples,
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Fig. 3. Example of observation pdf. (a) and (b) are the observation
pdf given states 1 and 2, g1(x) and g2(x) respectively. (c) is the
overall observation pdf in the base layer given p̂

(t)
= {0.5, 0.5},

P (Ot|p̂
(t)

= {0.5, 0.5}). (d) is the overall observation pdf in
the enhancement layer given p̂

(t)
= {0.5, 0.5} and the quantiza-

tion interval information from the base layer (Ib), P (Ot|p̂
(t)

=

{0.5, 0.5}, Ib).

so as to minimize the average reconstruction distortion at a given en-
coding rates for both base and enhancement layers. We first describe
tracking of the state probability distribution, and then discuss the
encoder adapter unit for the base layer and the enhancement layer.

3.1. State probability distribution tracking

We first estimate the HMS parameters using a training set, for which
we follow standard procedure in HMM analysis. We then define
forward variable at time t− 1 as

αt−1(i) = P (O1→(t−1), qt−1 = Si), (1)

i.e., the joint probability of emitting the observed source sequence up
to time t− 1, O1→(t−1) and that the state at time t− 1 is Si. These
forward variables can be computed recursively as given below:

1. α1(i) = πigi(O1) for 1 ≤ i ≤ N

2. αk+1(j) = [
∑N

i=1 αk(i)aij ]gj(Ok+1)

We can then obtain probability of being in state i at time t−1, using
Bayes’ rule,

P [qt−1 = Si|O1→(t−1)] =
P (qt−1 = Si, O1→(t−1))

P (O1→(t−1))

=
P (qt−1 = Si, O1→(t−1))∑N
j=1 P (qt−1 = Sj , O1→(t−1))

=
αt−1(i)∑N

j=1 αt−1(j)
(2)

Using these we can compute the probability of being in state i at
time t, p(t,i), given the observation sequence up to time t− 1 as:

p(t,i) = P [qt = Si|O1→(t−1)]

=

N∑
j=1

P [qt−1 = Sj |O1→(t−1)]aij (3)

The state probability distribution at time t, p
(t)

, is defined as,

p
(t)

= {p(t,1), . . . , p(t,N)}

= {P [qt = S1|O1→(t−1)], · · · , P [qt = SN |O1→(t−1)]}.
(4)

Given p
(t)

, the best estimate for the source distribution will be:

N∑
j=1

p(t,j)gj(x) (5)

3.2. Base Layer Design

At the base layer the state probability distribution tracking unit finds,
p̂b, using base layer reconstructed observation samples Ôb, as

p̂b
(t)

= {p̂b(t,1), . . . , p̂b(t,N)}

= {P [qt = S1|Ôb
1→(t−1)], . . . , P [qt = SN |Ôb

1→(t−1)]}. (6)

Using the reconstructed observation, instead of the original samples,
ensures the decoder can exactly mimic the operations of the encoder.
Given p̂b

(t)
, the best estimate for the source distribution is:

N∑
j=1

p̂b(t,j)gj(x) (7)

One possible approach is to design a quantizer for this pdf for
each source output from the ground up. But it clearly entails high
complexity at the encoder and the decoder. We thus propose an alter-
native method with both low complexity and low memory require-
ment. For a set of T representative p, we find the best codebook
using Lloyd’s (or other) algorithm offline. Then for a given p̂b

(t)
in

the process of encoding or decoding, we find the closest representa-
tive p from the set of T . Finally using the codebook of the closest
representative as an initialization, we run one iteration of the Lloyd’s
algorithm, to find the codebook to be used for current sample.

Note that for the first symbol, we simply use a quantizer based
on the assumption that the source symbol is from a fixed state (based
on π) at both the encoder and decoder.

3.3. Enhancement Layer Design

The goal here is to design the best codebook for the enhancement
layer based on:

• Quantization interval from the base layer, and

• State probability distribution based on the enhancement layer
reconstructed observation samples Ôe.

The enhancement layer state probability distribution tracking
unit finds p̂e

(t)
, similar to the base layer, but using enhancement layer

reconstructed observation samples Ôe, as

p̂e
(t)

= {p̂e(t,1), . . . , p̂e(t,N)}

= {P [qt = S1|Ôe
1→(t−1)], . . . , P [qt = SN |Ôe

1→(t−1)]}.

Given just p̂e
(t)

, the best estimate for the source distribution is:

N∑
j=1

p̂e(t,j)gj(x) (8)
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Fig. 4. Rate-Distortion plots for the proposed method, DPCM and
the lower bound, at base layer rate of 3 and enhancement layer rate
ranging from 2 to 5 bits per sample.

However, in combination with the quantization interval information
from the base layer, the best estimate for the source distribution is:

N∑
j=1

p̂e(t,j)ĝj(x) (9)

where, ĝj(x) is the observation pdf in state j truncated and normal-
ized to the interval determined by quantization at the base layer.

We design the quantizer for this pdf of the current sample, by
using uniform codebook as an initialization and running one itera-
tion of Lloyd’s algorithm. Note that we use uniform codebook as
an initialization for the enhancement layer quantizer design as ob-
servation pdf within the quantization interval of the base layer has
lesser variations and is closer to uniform distribution. However, this
assumption is not true for the base layer, as illustrated by an example
source distribution for a specific p̂

(t)
in Fig. 3. Using the uniform

codebook as the initialization also reduces the memory requirements
of the encoder and the decoder. For the first symbol, we assume that
the source symbol is from a fixed state (based on π) at both the en-
coder and decoder, and use this in combination with the quantization
interval information from the base layer.

Note that we can generalize our proposed approach to any num-
ber of enhancement layers, by combining the refined estimate of
state probability distribution based on observation reconstruction of
the given layer, with the quantization interval information from its
lower layers.

4. EXPERIMENTAL RESULTS

For the the first experiment, we use a HMS which has two Gaus-
sian subsources, one of them with mean µ1 = −1.5 and variance
σ2
1 = 1 the other one with mean µ2 = +1.5 and variance σ2

2 = 1,
and the transition probabilities are, a11 = a22 = 0.99. For the scal-
able coder, we set the base layer rate to be R12 = 3 bits and the
enhancement layer rate varies as R2 = 2, 3, 4, 5 bits. We compare
the proposed method with the prior approach which assumes a sim-
ple Markov model and uses DPCM in the base layer and employs a
quantizer designed via Lloyd’s algorithm for encoding the base layer
reconstruction error in the enhancement layer. Also we compare our
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Fig. 5. Distortion plots for the proposed method and DPCM, at base
and enhancement layer rates of 3 bits/sample, and transition proba-
bility, a11 = a22, varying from 0.9 to 0.99.

results with the theoretical lower bound for using a switched scalar
quantizer [9] operating at the total rate of R12 + R2 bits. The rate
distortion plots for the different approaches and the lower bound are
shown in Fig. 4. The superiority of the proposed method is evident
from the plots with substantial gains of around 5 dB over the prior
approach. Note that there is a gap of around 2 dB from the lower
bound due to the scalable coding penalty of the hierarchical structure
employed, as this source distortion pair is not successively refinable.

In the second experiment, the same source is used, but with vary-
ing transition probability, a11 = a22, from 0.9 to 0.99, and fixed
coding rate of 3 bits in the base and the enhancement layer. Re-
sults for this experiment, as shown in Fig. 5, demonstrates the gains
marginally increasing with values of a11.

Note that calculating p̂ at base and enhancement layers of en-
coder and decoder does not impose any significant computational
burden, as forward variables are easily updated recursively for each
sample (as given in Section 3.1) and then p̂ is obtained with a few
more manipulations.

5. CONCLUSION

We have proposed a novel technique for scalable coding of hidden
Markov sources which utilizes all the available information while
coding a given layer. Contrary to the existing approaches, which
assume a simple Markov model, we use the hidden Markov model
and exploit the dependency efficiently in the hidden states.

In the base layer, the state probability distribution is estimated
for each sample using past base layer observation reconstruction and
the quantizer for the current sample is updated accordingly. In the
enhancement layer, the state probability distribution is refined for
each sample using past enhancement layer observation reconstruc-
tion. Then this information is combined with the quantization inter-
val available from the base layer, and the quantizer for the current
sample is updated accordingly. The decoder mimics this quantizer
updates of the encoder in both base and enhancement layers.

Experimental results show substantial performance improve-
ments of the proposed approach over the prior approach of assuming
a simple Markov model.
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