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ABSTRACT

Sampling spatial fields using sensors which are location
unaware is an exciting topic. Due to symmetry and shift-
invariance of bandlimited fields, it is known that uniformly
distributed location-unaware sensors cannot infer the field.

This work studies asymmetric (nonuniform) distributions
on location-unaware sensors that will enable bandlimited
field inference. In this first exposition, to facilitate analysis,
location-unaware sensors are restricted to a discrete grid.
Oversampling is used to overcome the lack of location infor-
mation. The samples obtained from location-unaware sensors
are clustered together to infer the field using the probabil-
ity distribution that governs sensor placement on the grid.
Based on this clustering algorithm, the main result of this
work is to find the optimal probability distribution on sensor
locations that minimizes the detection error-probability of the
underlying spatial field.

Index Terms— Signal reconstruction, signal sampling,
wireless sensor networks

1. INTRODUCTION

Localization of sensors is a challenging task [1]. An alter-
nate option to having expensive sensors or expensive local-
ization algorithms is to work with sensors which are location
unaware. Recently, bandlimited field estimation without any
location information of the sensors in a distributed setup has
been studied [2] and is an exciting topic. The key technique is
to utilize multitude of such sensors (oversampling) and lever-
age the random distribution on their spatial locations. Due
to symmetry and shift-invariance properties of bandlimited
fields, it is known that uniformly distributed location-unaware
sensors do not infer the field uniquely [2]. From now on,
location-unaware sensors will be simply termed as sensors.

This work studies asymmetric (statistical) distributions on
sensors, that may enable bandlimited field reconstruction. If
the location of each sensor is random, then a bandlimited field

This work has been supported by IRCC, IIT Bombay (P09IRCC039).

operating on this randomness is observed. Such process is
nonlinear and resulting inference problems are difficult. To
overcome analytical intractability, in this first exposition on
the topic, the sensors’ location is restricted to a random point
on an equi-spaced discrete grid.1. Oversampling will be used
to overcome location unawareness.

With oversampling, samples obtained from sensors can
be clustered together to infer which sample belongs to which
spatial location on the equi-spaced grid where the sensors are
present. If p is probability with which a sensor falls at a given
location, then ≈ np will be the number of samples obtained
from there, as n becomes large. The success of this clustering
scheme will depend on the probability distribution that gov-
erns sensor placement on the grid. By assigning locations to
samples based on their expected frequency, the field can be
detected. The main result of this work is to find the optimal
probability distribution on sensor locations that minimizes the
detection error-probability of the underlying spatial field.

Prior art: Estimation of bandlimited fields from samples
taken at unknown but statistically distributed locations was
studied by Kumar [2]. Reconstruction of discrete-time ban-
dlimited fields from unknown sampling locations was studied
by Marziliano and Vetterli [3] in a combinatorial setting. Es-
timation of bandlimited signals with random sampling loca-
tions has been studied by Nordio et al. [4], where the locations
are obtained by a perturbation of the equi-spaced grid. In this
work, design of probability distribution on sensor locations is
addressed to minimize the detection error-probability.

Notation: Space will be denoted by t. Spatial field will be
denotes by g(t). Vectors are column-vectors. The probability
operator will be denoted by P. Indicator function of a set A
will be denoted by 1(x ∈ A). Independent and identically
distributed will be termed as i.i.d. Finally, j =

√
−1.

Organization: Sampling model and existing results neces-
sary for analysis are presented in Section 2. In Section 3, the
minimization of field detection error-probability is addressed.
Finally, conclusions are presented in Section 4.

1This may arise in scenarios where location information is masked to pre-
serve the identity of the sensors, or to reduce the amount of transmitted-data.
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2. SAMPLING MODEL AND REVIEW

Sampling model used and review of related theoretical results
is discussed in this section. Field model appears first.

2.1. Spatial field model

The spatial field g(t) is assumed to be periodic, real-valued
and bandlimited. Without loss of generality (WLOG), the pe-
riod of g(t) is fixed to 1. Then, the Fourier series of g(t) is

g(t) =

b∑
k=−b

a[k] exp(j2πkt) (1)

where a[k] are the Fourier series coefficients of g(t) and b
is a known bandwidth parameter. For simplicity of notation,
define sb := 1/(2b + 1) as a spacing parameter and φk :=
exp(j2πksb),−b ≤ k ≤ b. Let Φb be defined as

Φb =


1 . . . 1
φ−b . . . φb

...
...

(φ−b)
2b . . . (φb)

2b

 .
The columns of Φb are orthogonal and a sampling theorem
ensures that [5, 4]:

~a = (Φb)
−1~g =

1

(2b+ 1)
Φ†b~g, (2)

where~a = (a[−b], a[−b+1], . . . , a[b])T , where Φ†b is the con-
jugate transpose of Φb, and ~g = (g(0), g(sb), . . . , g(2bsb))

T .
From (2), ~a and g(t) can be obtained using the samples in ~g.

It will be assumed that g(isb) are distinct for different val-
ues of i. This feature will be useful during clustering.2

2.2. Sensor deployment model

A discrete-valued non-uniform distribution is considered for
bandlimited field inference. It will be assumed that a sensor
is at location T such that T = isb with probability pi where
i = 0, 1, . . . , 2b and

∑2b
i=0 pi = 1. Correspondingly,

g(T ) = g(isb) with probability pi, i = 0, 1, . . . , 2b (3)

In our model, the sensor falls at isb, 0 ≤ i ≤ 2b but its
location, that is the index i, is not known. The parameter
~p := p0, p1, . . . , p2b will be treated as a design choice to op-
timize any performance criterion (see Section 3). It will be

2If ~a is the realization of a continuous random distribution, then this con-
dition will hold almost surely. A violation of this condition implies that

b∑
k=−b

a[k](exp(j2πkmsb) − exp(j2πknsb)) = 0. That is, a linear com-

bination of ~a–a continuous random variable–is zero with probability one.

assumed that elements of ~p are distinct (to break symmetry in
the distribution of sensor-locations). WLOG, assume that

p0 < p1 < . . . < p2b. (4)

It will be assumed that i.i.d. samples g(T1), g(T2), . . . , g(Tn)
are available for the detection of spatial field, where n corre-
sponds to oversampling.3

2.3. Useful mathematical results

To analyze the detection error-probability, large deviation
analysis setup will be used. Sanov’s theorem, which ad-
dresses the asymptotic likelihood properties with respect to
an incorrect probability model, will be used [6, Chap 11.4].
Let X1, . . . , Xn be i.i.d. random variables with discrete dis-
tribution ~p. Then, the observed distribution of X1, . . . , Xn

lies in the closed set E with the following probability

lim
n→∞

1

n
log2 [P(Xn

1 ∈ E)] = −D(~q∗ ‖ ~p) (5)

where ~q∗ = arg min~q∈E D(~q ‖ ~p) is the distribution in E
that is the closest to ~p in the Kullback Leibler divergence or
relative entropy terms. The quantityD(~q∗ ‖ ~p) will be termed
as the error-exponent in this work.

The following inequalities will be used for optimization

AM-GM:
x+ y

2
≥ √xy, x, y ≥ 0 (6)

Log-sum:
n∑
i=1

ai log
ai
bi
≥ a log

a

b
, ai, bi > 0 (7)

where a =
∑n
i=1 ai and b =

∑n
i=1 bi.

3. FIELD DETECTION AND ITS PERFORMANCE

Field detection and the choice of ~p is discussed in this section.

3.1. The field detection algorithm

Based on the readings g(T1), g(T2), . . . , g(Tn), the field g(t)
has to be detected. From (4) and Section 2.1, {g(isb), pi}
pairs are distinct in both the elements. Each sensor records
g(isb) with probability pi. The following clustering algo-
rithm will be used to ascertain the field samples g(isb), which
specify the entire field g(t) (see (2)):

1. The readings Y1 := g(T1), . . . , Yn := g(Tn), with Ti
unknown and in the set {0, sb, . . . , 2bsb}, are collected.

2. The values Y1, Y2, . . . , Yn are clustered into (value,
type) pairs. Equal values (value) in Y1, Y2, . . . , Yn
are collected together and the number of equal values
(type) is recorded.

3It is desirable to address the setup where each sensor’s location T is
realized from an asymmetric continuous distribution supported in [0, 1]. This
problem is nonlinear and analytically difficult.
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3. Empirical probabilities type/n for each value are cal-
culated. For large n, the empirical probability type/n
of each value will be near the correct pi in ~p.

4. The value with smallest empirical probability is as-
signed to g(0), the value with next smallest empirical
probability is assigned to g(sb), and so on till g(2bsb).

Example 3.1 Consider a signal g1(t) with bandwidth param-
eter b = 1, and sb = 1

2b+1 = 1
3 . The field values are known

to be g1(0) = 1.06, g1(1/3) = 1.80, g1(2/3) = 0.14.
The field is sampled using n = 10 randomly realized val-

ues of sensor’s location in the set {0, 1/3, 2/3}. The 10 ob-
served samples were 1.80, 0.14, 0.14, 1.06, 1.80, 0.14, 1.80,
1.06, 0.14, 0.14. The (value, type) pairs are (1.06, 2), (1.80, 3),
and (0.14, 5). The above algorithm concludes that g1(0) =
1.06, g1(1/3) = 1.80, g1(2/3) = 0.14, and is correct.

The field is again sampled using n = 10 randomly real-
ized values of sensor’s location. This time, the 10 observed
samples were 1.06, 0.14, 0.14, 1.06, 1.80, 0.14, 1.80, 1.06,
0.14, 0.14. The (value, type) pairs are (1.06, 3), (1.80, 2),
and (0.14, 5). The above algorithm concludes that g1(0) =
1.80, g1(1/3) = 1.06, g1(2/3) = 0.14, and is incorrect.

For further discussions, define Ni :=
∑n
j=1 1 [Yj = g(isb)]

as the type of g(isb) in n field observations. Then, in the
above algorithm as n→∞, it is expected that

0 < N0 < N1 < . . . < N2b. (8)

If the above event is violated, it results in erroneous field de-
tection. The probability of correct detection in (8) will be
maximized by choosing the sensor deployment distribution ~p.

3.2. Detection error-probability minimization

The spatial field is detected correctly when the condition
in (8) is satisfied. Let Pe be the detection error-probability.
The error-exponent (as the number of samples n gets large) in
the detection error-probability will be maximized. Note that,

Pe = P
[
(0 < N0 < N1 < ... < N2b)

c
]

(9)

= P
[
{N0 = 0} ∪ {N0 ≥ N1} ∪ . . . ∪ {N2b−1 ≥ N2b}

]
By applying the union-bound and the subset-inequality (A ⊆
B implies P(A) ≤ P(B)) in the above equation [7], we get

Pe ≤ (2b+ 1) max
{
P(N0 = 0),P(N0 ≥ N1), . . . ,

P(N2b−1 ≥ N2b)
}

(10)

and Pe ≥ max
{
P(N0 = 0),P(N0 ≥ N1), . . . ,

P(N2b−1 ≥ N2b)
}
. (11)

From the above equations, the error-exponent in Pe is max-
imized if the error exponent of max

{
P(N0 = 0),P(N0 ≥

N1), . . . ,P(N2b−1 ≥ N2b)
}

is maximized. The constant fac-
tor (2b+ 1) in (10) does not contribute to the error-exponent.
The error-exponent maximization is addressed next.

A sensor falls at location 0 with probability p0. With n
randomly deployed sensors,

P[N0 = 0] = (1− p0)n. (12)

To compute P[N0 ≥ N1] and other similar events, Sanov’s
theorem will be used (see (5)). An empirical distribution ~q
will be found such thatD(~q ‖ ~p) is minimum, which results in
the error-exponent via Sanov’s theorem (see (5)). The empir-
ical distribution is ~q =

[
N0

n ,
N1

n , . . . ,
N2b

n

]
and, from Sanov’s

theorem, the function to be minimized is

D(~q ‖ ~p) =

2b∑
i=0

Ni
n

log2

Ni
npi

subject to
2b∑
i=0

Ni
n

= 1 and N1 ≤ N0. (13)

The corresponding Lagrangian is

L =

2b∑
i=0

Ni
n

log2

Ni
npi

+ λ

(
2b∑
i=0

Ni − n

)
+ µ(N1 −N0)

At the minima of D(~q ‖ ~p) in (13),

∂L

∂Ni
= 0 for 0 ≤ i ≤ 2b (14)

The solutions of above equation are

N0 =
np0
e

2−n(λ−µ), N1 =
np1
e

2−n(λ+µ), (15)

and,

Ni =
npi
e

2−nλ for i ≥ 2. (16)

The values of µ and λ can be found by KKT conditions [8],
but by using the log-sum and AM-GM inequalities in (7)
and (6) µ can be found directly as follows. Observe that µ is
only associated with N0 and N1. The terms corresponding to
N0 and N1 in (13) is lower-bounded by

N0

n
log2

N0

np0
+
N1

n
log2

N1

np1
≥ N0 +N1

n
log2

N0 +N1

n(p0 + p1)

≥ 2
√
N0N1

n
log2

2
√
N0N1

n(p0 + p1)
.

In the above equation, the minimum value requires that N0 =
N1. This results in

µ =
1

2n
log2

p1
p0
, and N0 = N1 =

n

e
2−nλ

√
p0p1 (17)
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In (15), the product N0N1 does not depend on µ. So the min-
imum value of first two terms in D(~q ‖ ~p) is attained only
when N0 = N1 = n

e 2−nλ
√
p0p1.

For finding λ, note that
∑2b
i=0Ni = n. Using N0, N1

from (17) and Ni from (16) results in

λ = − 1

n
log2(

e

1− (
√
p1 −

√
p0)2

) (18)

This value of λ gives

Ni =
npi

1− (
√
p1 −

√
p0)2

and N0 = N1 =
n
√
p0p1

1− (
√
p1 −

√
p0)2

.

Substitution of N0, N1, . . . , N2b from the above equation
in (13) results in the desired minimum value of D(~q∗ ‖ ~p),

D(~q∗ ‖ ~p) = log2

1

1− (
√
p1 −

√
p0)2

(19)

For Ni ≥ Ni+1, the optimization constraint N0 ≥ N1 will
get replaced by Ni ≥ Ni+1 in (13). The analysis is identical
and the result is

D(~q∗ ‖ ~p) = log2

1

1− (
√
pi+1 −

√
pi)2

. (20)

Let d0 =
√
p0 and di =

√
pi −

√
pi−1, 1 ≤ i ≤ 2b and

let dmin = min{d0, d1, . . . , d2b}. Then dmin will determine
the value of the largest term in max

{
P(N0 = 0),P(N0 ≥

N1), . . . ,P(N2b−1 ≥ N2b)
}

. This is by Sanov’s theorem

which asserts that P(Ni ≥ Ni+1) ∝ 2−nD(~q∗‖~p). Conse-
quently, the value of dmin has to be maximized.

For maximizing dmin, note that

(2b+ 1)dmin ≤
2b∑
i=0

di =
√
p2b. (21)

To satisfy equality in (21),

√
p0 =

√
p2b

2b+ 1
and
√
pi+1 =

√
pi +

√
p2b

2b+ 1
. (22)

This relationship, along with p0 + . . .+ p2b = 1, results in

pi =
3(i+ 1)2

(b+ 1)(2b+ 1)(4b+ 3)
for 0 ≤ i ≤ 2b. (23)

This law on ~p ensures that the field detection error probability
in (9) is minimized, and is the main result of this work.

Using MATLAB, the detection error-probability was
compared for different laws on ~p. The field bandwidth
was kept as b = 4 and its Fourier series coefficients were
picked by a uniform random number generator: a[0] =

Fig. 1. Detection error-probabilities for different laws on ~p are
compared. The four laws used include the optimal ~p in (23),
a linear law, a cubic law, and a randomly generated ~p. As
expected, the law in (23) is the best in performance.

1, a[1] = 0.9134− j0.5469, a[2] = 0.1270− j0.2785, a[3] =
0.9058 − j0.0975, and a[4] = 0.8147 − j0.6324 were used.
For real valued fields a[−k] = ā[k] by conjugate symmetry.
The number of randomly collected samples was varied be-
tween 100 to 10000. The empirical probability of field detec-
tion error, when calculated using 10000 Monte-Carlo trials, is
plotted in Fig. 1. The log-log plot reveals the error exponent.
Four different methods to select ~p were used for comparison.
The selections include: (i) the optimal distribution in (23), (ii)
a linear distribution ~p = [α, 2α, . . . , (2b + 1)α], (iii) a cubic
distribution ~p = [α, 8α, . . . , (2b + 1)3α], and (iv) ordered
uniformly distributed random variable realizations based dis-
tribution ~p = α[U(1), U(2), . . . , U(2b + 1)]. In all these
cases, α was selected to ensure

∑2b
i=0 pi = 1. Each plot ends

when the empirical detection error probability becomes zero.
From the plots, the distribution discovered in (23) has fastest
decay, and it results in smallest detection error-probability.

4. CONCLUSIONS

The detection of bandlimited fields using location-unaware
sensors was addressed in this work. The sensor locations
were restricted to an equi-spaced discrete grid. Using an al-
gorithm, which clusters distinct field values and records their
types, field detection can be performed. It was shown that
the detection error-probability decreases exponentially fast in
the number of sensors deployed. The optimal distribution for
maximizing the error-probability exponent was derived.

In the presence of measurement-noise, the samples will
not belong to a finite set and necessitate the use of more so-
phisticated clustering algorithms. This setup and the setup
where sensors are located with an arbitrary continuous distri-
bution are left for future work.
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