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ABSTRACT

Optical time–of–flight (ToF) sensors can measure scene depth accu-
rately by projection and reception of an optical signal. The range to a
surface in the path of the emitted signal is proportional to the delay time
of the light echo or the reflected signal. In practice, a diverging beam
may be subject to multi-echo backscatter, and all these echoes must be
resolved to estimate the multiple depths. In this paper, we propose a
method for super-resolution of optical ToF signals. Our contributions
are twofold. Starting with a general image formation model common
to most ToF sensors, we draw a striking analogy of ToF systems with
sampling theory. Based on our model, we reformulate the ToF super-
resolution problem as a parameter estimation problem pivoted around
the finite–rate–of–innovation framework. In particular, we show that
super–resolution of multi-echo backscattered signal amounts to recov-
ery of Dirac impulses from low-pass measurements. Our theory is cor-
roborated by analysis of data collected from a photon counting, LiDAR
sensor, showing the effectiveness of our non-iterative and computation-
ally efficient algorithm.

Index Terms— Finite–rate–of–innovation, multi-path, sampling
theory, super–resolution, time–of–flight imaging.

1. INTRODUCTION

In recent years, there has been a surge of research interest in studying
time–of–flight or ToF imaging sensors. ToF sensors are active sensors
that capture three dimensional information of a scene [5–8]. Unlike
conventional digital sensors, a ToF sensor captures two images per ac-
quisition: an amplitude image and a phase/range image. The amplitude
image is the usual two dimensional photograph. The unconventional
phase image at each pixel provides the depth information of the scene.
The range image is computed using the ToF principle—the amount
of time it takes for light to reflect back from an object. The ampli-
tude/phase image combination provides a 3D point cloud of the scene.

Several optical ToF systems have been designed [6–8] using either
pulsed or continuous wave technology. All these sensors function on
the premise that there is a one–to–one mapping between the scene and
the sensor. Each sensor pixel is associated with one depth value. In this
paper we consider single pixel measurements only, as shown in Fig. 1(a).

In practice, the scene of interest is often complex and results in
multi-echo backscattered signal [4,9]. This leads to multiple reflections
observed at a given pixel where each reflection (or the corresponding
time delay) must be computed to estimate the correct depth value. We
discuss this case in Fig. 1(b) and the corresponding LiDAR or light detec-
tion and ranging based ToF data is plotted in Fig. 1(d). The problem of
resolving constituent components of the superimposed echoes has been
addressed in a number of papers (cf. [4, 9, 10] and references therein).

In this paper, we demonstrate super–resolution capability using data
from a photon counting, ToF imaging sensor. This is a challenging

t

Emitted Signal

Time-of-Flight

Reflected Signal

t

First Echo Second Echo

Multiple Times-of-Flight

Super-Resolved  
Time-of Flight

t

Reflected Signal

a

b

c

Time (nanosecond)
10.5 11 11.5 12 12.5 13 13.5 14 14.5

N
or

m
al

iz
ed

 A
m

pl
itu

de

0

0.2

0.4

0.6

0.8

1

Time (nanoseconds)
11.5 12 12.5 13 13.5 14 14.5

N
or

m
al

iz
ed

 A
m

pl
itu

de

0

0.2

0.4

0.6

0.8

1

Time (nanosecond)
10.5 11 11.5 12 12.5 13 13.5 14 14.5

N
or

m
al

iz
ed

 A
m

pl
itu

de

0

0.2

0.4

0.6

0.8

1

Time (nanoseconds)
11.5 12 12.5 13 13.5 14 14.5

N
or

m
al

iz
ed

 A
m

pl
itu

de

0

0.2

0.4

0.6

0.8

1 ed

Fig. 1: Illustration of the time–of–flight (ToF) principle. (a) The sensor emits
a signal and the reflected signal is time delayed version of the emitted signal.
The time delay is proportional to the distance of the object form the sensor.
(b) ToF principle in complex environment which suffers from multiple reflected
echoes. (c) Challenging case of super-resolution of multiple overlapping echoes.
(d) Lidar ToF data corresponding to (b). (e) Lidar ToF data corresponding to
the super-resolution problem in (c).

setting in that the backscattered signal contains echoes that defy the
Rayleigh criterion [11], that is to say, the echoes overlap such that no
clear peaks are evident in the return signal. In general, a simple peak
finding or correlation algorithm is unable to resolve the two returns.
We describe this setting in Fig. 1(c). In 1(e), we plot experimentally
acquired LiDAR ToF data.

In previous work [4] et al. have shown how Bayesian analysis of
(TCSPC) ToF data can both detect very low signal levels, sometimes
less than the background, and also resolve surfaces in depth at the order
of 1 cm at a distance of 330 m. In this paper we present a new, non-
iterative method to process the ToF data with comparable resolution,
thereby allowing deterministic and fixed time processing of lower com-
plexity. We show the comparable performance on the same data set as
used previously [4, 10].

The remainder of this paper is organized as follows: Starting with a
generalized image formation model common to most ToF sensors, we
establish a link between ToF sensors and sampling theory [12]. There
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Table 1: Different Modalities for Optical Time-of-Flight Sensor Based Depth Imaging

Modality Probing Function Reflected Function IRF Measurements

CW–ToF⁽¹⁾ [1, 2] p (t) = 1 + p0 cos (ω0t)

Γ0p
(
t− 2d0

c

) φ (t, τ) = p (τ − t) Γ0

(
1 +

p20
2

cos
(
ω
(
t+ 2d0

c

)))
AMCW–ToF⁽²⁾ [3] p (t) = PN–Sequence⁽⁴⁾ φ (t, τ) = p (τ − t) Γ0 (p ∗ p)

(
t− 2d0

c

)
, p (t) = p (−t)

LIDAR⁽³⁾ [4] p (t) = δ (t) φ (t, τ)
(8)
= φΘ (t− τ) Γ0φΘ (t− 2d0/c)

⁽¹⁾ Continuous Wave ToF ⁽²⁾ Amplitude Modulated CW ToF ⁽³⁾ Laser Detection and Ranging ⁽⁴⁾ Pseudo–random Sequence.

on, we model multiple echoes of light as a sparse signal:

h (t) =
∑K−1

k=0
Γkδ (t− tk), (1)

where δ denotes Dirac distribution, {Γk}K−1
k=0 denotes the strength of

kth echo and {tk}K−1
k=0 , the corresponding time delay. In summary, we

re-formulate the ToF super-resolution problem as recovery of stream
of Dirac impulses in (1) from the knowledge of its low-pass filtered
samples. Our reinterpretation allows us to invoke the finite–rate–of–
innovation sampling theory [13, 14]. We demonstrate our results on
experiments conducted with LiDAR ToF systems [4, 9]. Compared to
previously studied solutions [4, 9], our method enjoys the advantage
being non-iterative, of fixed time complexity and faster by capitalizing
on spectrum estimation methods [15].

2. TOF IMAGE FORMATIONMODEL

2.1. A General Model for ToF Sensors

We begin with a general description of the image formation model for
ToF sensors. A ToF system emits a probing function p (t) , t ∈ R
which may be a time-localized pulse or a continuous wave signal. The
probing function interacts with the scene or the environment that is
characterized by scene response function (SRF), h (t, τ). This results in
the reflected signal r (t) modeled by the Fredholm integral operator,

p → h → r (t) =

∫
Ω1

p (τ)h (t, τ) dτ︸ ︷︷ ︸
Reflected Signal

. (2)

The reflected signal is observed at the sensor characterized by instrument
response function (IRF) or the sensor response function, φ (t, τ). For ex-
ample, in context of optical imaging, this may be thought of as the point
spread function. The resulting measurements m (t) then read,

r → φ → m (t) =

∫
Ω2

r (τ)φ (t, τ) dτ︸ ︷︷ ︸
Measured Signal

. (3)

Finally, the ToF sensor samples the measured signal with the sampling
rate ∆ and stores a digital sequence, m [n] = m (t)|t=n∆, n ∈ Z.

Based on the choice of probing function, p and the IRF φ(t, τ),
ToF imaging modalities may be categorized taxonomically. For exam-
ple, continuous wave based optical ToF imaging systems [1, 2] such as
the Microsoft Kinect use a sinusoidal probing function p (t) = 1 +
cos (ω0t) and the IRF is designed to be φ (t, τ) = p (τ − t).

In most applications, the SRF is modeled as,

h (t, τ) = Γ0δ (t− τ − 2d0/c) (4)

which leads to a shift–invariant SRF representing a scene at a distance
d0 from the sensor and where c = 3× 108 is the speed of light.

2.2. ToF Sensors and Sampling Theory

In many practical cases of interest, the SRF and the IRF are shift–
invariant functions such that,

hSI (t, τ) = h (t− τ) and φSI (t, τ) = φ (t− τ) , (5)

respectively. We list the most prevalent examples in Table 1. Whenever
(5) holds, we can rewrite (2) and (3) as convolution integrals and hence,

m (t)
(5)
= (p ∗ h ∗ φ) (t) ≡ (ϕ ∗ h) (t) , ϕ (t) = (p ∗ φ) (t) . (6)

In analogy to shift–invariant sampling theory [12], we re-interpret (6),
as sampling of an unknown, shift–invariant SRF with sampling kernel
ϕ. Finally, the ToF sensor measurements are uniform samples,

m [k] = (ϕ ∗ h) (t)
∑

k∈Z
δ (t− k∆). (7)

2.3. Lidar Based ToF Imaging

Lidar based imaging sensors probe the scene with a time-localized pulse
with resolution of the order of few picoseconds [16] which one may
approximate as pLiDAR (t) ≈ δ (t). Reflection from an opaque surface
leads to the SRF in (4) resulting in the reflected signal, rLiDAR (t) =
Γ0δ (t− t0). As shown in [4, 10], the IRF due to SPAD detectors
may be modeled as a parametric, shift–invariant kernel of form,

φΘΘΘ (t) = αe(ak−T0)t+bk , t ∈ Ik (8)

where, {ak, bk}4k=1 take 4 different values with continuous transitions,
depending whether t ∈ Ik, with I1 = (∞, T1) , I2 = [T1, T2) , I3 =
[T2, T3) , I4 = (∞, T1) andΘΘΘ is an unknown parameter vector,

ΘΘΘ =
[
α σ T0 T1 T2 T3 λ1 λ2 λ3

]⊤
. (9)

As a result of this IRF, the measurements readm (t) = Γ0φΘΘΘ (t− t0).
As shown in [4, 16], the parameter vector ΘΘΘ may be calibrated and the
depth/delay t0 is estimated using a linear relation [16].

3. SUPER–RESOLVED TOF IMAGING

In this section, we formulate the ToF super-resolution problem. In
case when the ToF sensor receives a multi-echo backscattered signal (cf.
Fig. 1(b),(c)), the SRF can be modeled as [1, 2, 17],

hSI (t, τ) =

K−1∑
k=0

Γkδ

(
t− τ − 2

dk
c

)
, c = 3× 108 m/s . (10)

In view of (6), the continuous time measurements amount to,

m (t) =
∑K−1

k=0
Γkϕ (t− tk), tk = 2

dk
c
. (11)
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This brings us to our problem statement:

Given N discrete measurements, {m [n]}N−1
n=0 defined in (7), es-

timate the SRF in (10) parameterized by {Γk, tk}K−1
k=0 .

3.1. Bandlimited Approximation of Sampling Kernel

The super-resolution problem is ill–posed if ϕ is unknown. In context
of FRI sampling theory, the so–called “sampling kernel” [13, 14] ϕ is
assumed to be known. Similarly, in ToF context, ϕ is either designed
or calibrated. We discuss two examples based on Table 1.
▶ In case of AMCW–ToF [1, 2, 18], p (t) is pre-defined and the IRF

is the time reversed version of the probing function. Hence,

ϕAMCW (t) = lim
T→∞

1

T

∫ +T/2

−T/2

p (τ) p (t+ τ) dτ ≡ (p ∗ p) (t) ,

(12)
where p (t) = p (−t) denotes the time reversal operation.

▶ In case of LiDAR based ToF systems, we have ϕ (t) = φΘΘΘ (t)
(cf. (8)). The parameter vectorΘΘΘ is estimated via calibration [4].

In this work, we take an alternate approach towards modeling of ϕ.
To this end, we use bandlimited approximation, that is, we approximate
ϕ (t) over an interval of size L with its first M0 frequency components.
This is accomplished by truncating the Fourier series so that,

ϕ̃ (t) =
∑

|m|⩽M0

ϕ̂meȷmω0t with ϕ̂m =
1

L

∫ L

0

ϕ (t) e−ȷmω0tdt,

(13)
where ϕ̃ (t) is the M0–coefficient approximation of ϕ (t), ϕ̂m,m =
−M0, . . . ,M0 are the Fourier Series coefficients of ϕ (t) and ω0 =
2π/L is the fundamental frequency depending on L which is chosen
to be the maximum operating range of the ToF system. For example,
L may be chosen to be the length of duration of the IRF obtained via
calibration. Alternatively, L = |max T − min T | , T = {tk}K−1

k=0 .
The bandlimited approximation approach is a natural choice for

modeling the sampling kernel ϕ. This is because:
♦))) Almost all optical systems are approximately bandlimited due to

physical limitations. In previous work [18,19], we have shown that
the AMCW ToF (cf. Table 1) based sampling kernel (12) admits
a bandlimited approximation. Here, we show the same for LiDAR
based systems. Note that ϕ (t) = φΘΘΘ (t) (cf. (8)) implying that the
sampling kernel is the same as the IRF. In Fig. 2(a), we plot the ob-
served ϕ (t) acquired experimentally together with its bandlimited
approximation ϕ̃ using M0 = 80.

♦))) Bandlimited approximation also circumvents the need to estimate
the unknown parameter vectorΘΘΘ (9) associated with ϕ.

3.2. Super-Resolution via FRI Principles

Bandlimited approximation of ϕ allows us to rewrite (11) as

m (t)
(11)
=

∑K−1

k=0
Γkϕ (t− tk)

(13)
≈

∑K−1

k=0
Γk

∑
|m|⩽M0

ϕ̂meȷmω0(t−tk)

=
∑

|m|⩽M0

ϕ̂m

∑K−1

k=0
Γke

−ȷmω0tk︸ ︷︷ ︸
ym

eȷmω0t

=
∑

|m|⩽M0

ϕ̂mymeȷmω0t. (14)
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Fig. 2: Instrument response function for LiDAR ToF system. (a) Observed
time profile and its Fourier Series approximation (13) with L = 25 ns and
M0 = 80. (b) Fourier spectrum together with Fourier Series coefficients
{ϕ̂m}|m|⩽M0=80 (13). With f0 = ω0/2π = 40.0195 MHz, the maxi-
mum frequency used for approximation of ϕ (t) is M0f0.

In vector–matrix notation we write the sampled measurements (7) as
m = VDΦy where,

• m ∈ RN+1 is a vector of N , low–pass filtered measurements, m
(7)
=

[ m[0] · · · m[N − 1] ]⊤.
• V ∈ CN×(2M0+1) is a Vandermonde/DFT matrix with matrix ele-

ment
[
eȷmω0n∆

]
n,m

.

• DΦ ∈ C(2M0+1)×(2M0+1) is a diagonal matrix with matrix element
[ϕ̂m]m,m which are the Fourier Series coefficients of ϕ (13).

• y ∈ C(2M0+1) is a vector of a sum of complex exponentials,

ym =
∑K−1

k=0
Γke

−ȷnω0tk . (15)

Hence, given m = VDΦy, we estimate {Γk, tk}K−1
k=0 in two steps:y1 First we obtain the vector y. Provided that N ≥ 2M0+1, we have

y = D−1
Φ V+m where D−1

Φ is the inverted diagonal matrix with
elements [ϕ̂−1

n ]n,n and (·)+ denotes the pseudo–inverse operation.y2 Having obtained y, we are left with task of estimating parameters
{Γk, tk}K−1

k=0 . In the noiseless setting, this can be accomplished
by using Prony’s method which relies on the observation that there
exists a sequence {hm}Km=0 which annihilates ym [15],

ym +
∑K

l=1
hlym−l = 0, m ⩾ K + 1. (16)

It turns out that the roots of the polynomial H (z) constructed with
coefficients as {hm}Km=0, that is,

H (z) =
∏K−1

k=0

(
1− e−ȷω0tkz−1) =

∑K−1

m=0
hmz−1,

encode the information of time delays {tk}K−1
k=0 . This is because

H
(
e−ȷω0tk

)
= 0. With {tk}K−1

k=0 , estimating {Γk}K−1
k=0 boils

down to a linear least squares problem,

min
{Γk}

K−1
k=0

∑
|m|⩽M0

∣∣∣ym −
∑K−1

k=0
Γke

−ȷnω0tk
∣∣∣2.

In view of (16), we have M0 > K. With ym = y∗
m, provided that

N ≥ K+1, we can estimate {Γk, tk}K−1
k=0 given m. This method can

be extended to the noisy case [14]. In fact, a number of methods discuss
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Fig. 3: LiDAR based Super-resolution ToF Imaging. (a) The experiment consists
of two retro-reflecting cubes at distance of 330 m from the sensor. We show
the recovery of reflectors with inter-reflector separation δdℓ1 = 1.7 cm. We
also plot the result due to Orthogonal Matching Pursuit [21]. (b) We conduct
experiments with various separations and plot the results on log–log scale. Our
method outperforms previously reported results on the same data in [4].

estimation of {Γk, tk}K−1
k=0 given y in presence on noise. We refer the

reader to [15] for a comprehensive overview of techniques. In this work,
we will use the Matrix Pencil Method due to Hua and Sarkar [20].

3.3. Experimental Results and Performance Evaluation

To measure the depth resolution of the TCSPC-TOF system, two retro-
reflecting corner cubes were placed at a distance of 330m from the Li-
DAR transmitter-receiver and the distance between these surfaces was
varied from δdℓ = 1.7 cm to 71.2 cm. For a corner cube, all beams, in-
dependent of incident angle, are reflected back in the original direction
so the behavior is that of a perfect reflecting surface. In these experi-
ments, the timing resolution of the receiver was ∆ = 6.1 ps, and the
collection time for each histogram was 30s. We calibrated the sampling
kernel ϕ (t) = φΘΘΘ (t) in (8) which is shown in Fig. 2(a). This is done
by recording the response of the LiDAR system to Lambertian reflector.

We plot measurements for δd1 = 1.7 cm in Fig. 3(a). Setting
M0 = 60 and discarding the boundary values, we use y = D−1

Φ V+m,
to estimate {ym}m=59

m=2 . We then use Matrix Pencil method [20]
with pencil parameter 1/2 to estimate {Γ̃k, t̃k}K−1

k=0 . Based on
these estimates, we re-synthesize {ỹm}m=59

m=2 using (15) which is
plotted in the inset of Fig. 3(a). For the ℓth experiment with sepa-
ration δdℓ, we estimate the separation using δd̃ℓ = 50(t̃

(ℓ)
2 − t̃

(ℓ)
1 )c

(in cm) with performance metric MSE or the mean squared error,
MSE(δd̃ℓ, δdℓ) = |50(t̃(ℓ)2 − t̃

(ℓ)
1 )c− δdℓ|2 as our evaluation met-

ric. The ToF estimates for super-resolution case with ℓ = 1 results
in [ t̃

(1)
1 , t̃

(1)
2 ] = [ 12.2398, 12.3542 ] ns. Similarly, for ℓ = 2, we

report, [ t̃(2)1 , t̃
(2)
2 ] = [ 12.1338, 12.3474 ] ns. The resulting MSE is,

MSE(δd̃1, δd1) = 2.6× 10−4 and MSE(δd̃2, δd2) = 2.5× 10−5.

respectively. We compare our method to sparse recovery methods such
as the OMP or the Orthogonal Matching Pursuit [21]. For the super-
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ratio or the SNR (in dB). (b) We use the IRF to estimate the SNR. The observed
SNR for the system is 43.18 dB. (c) We compare computational times for OMP
and matrix pencil method. The average of all trials is marked in the figure. In
contrast, the RJMCMC method due to [4] requires about a second per pixel.

resolution problem corresponding to ℓ = 1, the estimates are erro-
neous, [ t̃(1)1 , t̃

(1)
2 ]OMP = [ 12.2803, 12.6465 ]with MSE = 14.3884

which is orders of magnitude higher. For higher values of ℓ, the per-
formance of OMP is comparable. We note this behavior for ℓ ≥ 3.
RJMCMC based approach of Marin et al. [4] provides better estimates
compared to the OMP but is computationally intensive. Our proposed
approach provides better estimates compared to OMP and RJMCMC
method. For {δdℓ}18ℓ=1 we compare the estimates in Fig. 3(b) and note
that our proposed approach is reasonably accurate and outperforms pre-
viously reported results on the same data in [4].

The matrix pencil method is near optimal in performance (in sense
of achieving the Cramér–Rao bounds) [20]. In Fig. 4(a) we plot the
MSE as a function of signal–to–noise ratio or the SNR for separations
1.74 cm (super-resolution case), 3.204 cm (super-resolution case) and
18.3105 cm. The performance of our method is consistent with our
experiments. We omit discussion on Cramér-Rao bounds in this work
due to space limitations but results from [18] may be adapted to our set-
ting. We estimate the system SNR using the IRF which is approximately
43.18 dB (cf. Fig. 4(b)). Furthermore, our method is computationally
efficient compared to common-place sparse solver, OMP. As shown in
Fig. 4(c), it is about 5 times more efficient. A detailed discussion on
computational complexity can be found in [18].

4. CONCLUSION

In this paper, we report a method for super-resolution for ToF signals
that is applicable to a wide variety of ToF sensors. We present a uni-
fying image formation model for ToF systems which consolidates two
major classes of ToF sensors: AMCW and LiDAR. Based on our im-
age formation model, we draw a parallelism between ToF imaging and
sampling theory. In particular, we show that the super-resolution prob-
lem in context of ToF imaging can be re-formulated as a finite–rate–
of–innovation sampling problem. We discuss the effectivity our ap-
proach by performing experiments with LiDAR ToF sensors. Our pre-
liminary experiments show promising results towards super-resolving
multi-echo, backscattered, ToF signals. Compared to existing solutions
(cf. [4, 9, 10] and references therein), our method is computationally
attractive and more accurate in performance.
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