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ABSTRACT

We present a framework for estimating non-localized sources
of diffusion fields using spatiotemporal measurements of the
field. Specifically in this contribution, we consider two non-
localized source types: straight line and polygonal sources
and assume that the induced field is monitored using a sen-
sor network. Given the sensor measurements, we demon-
strate, for each non-point source parameterization, how to re-
duce the source estimation problem to a system governed by
a power series expansion that can then be efficiently solved
using Prony’s method, in order to reconstruct the source. We
then evaluate the proposed algorithms by performing some
numerical simulations using both noiseless and noisy spa-
tiotemporal sensor measurements of the field.

Index Terms— Diffusion fields, finite rate of innovation
(FRI), sensor networks, spatiotemporal sampling, source es-
timation.

1. INTRODUCTION

The sensing of physical phenomena driven by mathematical
models is an important application of sensor networks [1, 2].
Diffusion fields, for example, model accurately several real
life phenomena encountered in biology, physics and engineer-
ing. Consequently the analysis of such fields from spatiotem-
poral sensor network measurements has received consider-
able research efforts in recent times [3–5]. In these contri-
butions, the main focus has been on the centralized [6, 7] and
distributed estimation [8–11] of point diffusion sources with
instantaneous [7] or time-varying [5,12] temporal evolutions.
The point source model however is suitable for the diffusion
source estimation problem when the size of the sources are
several orders of magnitude smaller than the monitored re-
gion. This assumption however is otherwise invalid, for ex-
ample, in temperature monitoring of multicore processors for
load balancing, the sources may be better approximated by
planar polygons (see [13]).

This work is supported by the European Research Council (ERC) start-
ing investigator award Nr. 277800 (RecoSamp).

As a result we are concerned with the problem of recon-
structing non-localized sources of diffusion fields given spa-
tiotemporal sensor measurements of the induced field. In
particular we will consider two typical spatial distributions
for diffusion sources – i.e. straight line sources and con-
vex polygonal sources. Then we will propose suitable, noise
robust, source reconstruction schemes from spatiotemporal
samples of the field. To achieve this, we will assume we have
access to some generalized measurements of the field. In the
point source distribution case, it has been shown in [5] that,
these generalized measurements are governed by a power se-
ries expansion in the unknown point source parameters as
such can be solved efficiently using Prony’s method. When
the unknown sources are spatially non-localized however, the
power series expansion of the generalized measurements no
longer holds true. In this paper we demonstrate using tech-
niques from complex analysis that it is possible to properly
modify the generalized measurements in such a way that we
obtain a new power series expansion. This new series expan-
sion can then be solved using Prony’s method to recover si-
multaneously the endpoints (for a line source) or the vertices
(for a convex polygonal source) as well as the activation time
of the diffusion source.

The remainder of this paper is organized as follows. In
Section 2 we provide useful parameterizations of the non-
localized sources of interest and hence formally state the dif-
fusion source reconstruction problem. Section 3 presents a
derivation of the proposed method. Numerical simulations
are given in Section 4 to validate the performance of the pro-
posed scheme. We finally conclude the article in Section 5.

2. PROBLEM FORMULATION

We consider the problem of estimating the sources of diffu-
sion fields using spatiotemporal samples of the field. In this
contribution we are concerned with non-localized sources of
diffusion fields, with the intention of fully estimating their
geometry/shape and the activation times. Recall that a dif-
fusion field u(x, t) at location x ∈ R2 and time t, induced
by some unknown source distribution f(x, t) within a two-
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dimensional region Ω will propagate through Ω according to
the diffusion equation,

∂

∂t
u(x, t) = µ∇2u(x, t) + f(x, t), (1)

where µ is the diffusivity of the medium Ω. The theory of
Green’s functions allows us to obtain solutions of the PDE
(1) according to:

u(x, t) = (g ∗ f)(x, t), (2)

where g(x, t) = 1
4πµte

− ‖x‖2
4µt H(t) is the Green’s function of

the two-dimensional diffusion field, and H(t) is the unit step
function. A consequence of (2) is that the entire field u(x, t)
may be perfectly reconstructed provided the source distribu-
tion f(x, t) is known exactly. This is why we focus, herein,
on recovering f(x, t) using spatiotemporal samples of its in-
duced field.
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Fig. 1: Non Localized Sources in Ω.
We parameterize the sources we are interested in estimat-

ing. Specifically,

1. Straight Line Source: parameterized as follows

f(x, t) = cL(x)δ(t− τ), (3)

where c, τ ∈ R are the intensity and activation time
respectively, and L(x) ∈ Ω describes a line coinciding
with the position of the straight line source. In this case,
clearly the geometry of the source is uniquely defined
by its endpoints, i.e. the pair ξ1, ξ2 ∈ Ω, with ξ1 =
(ξ1,1, ξ2,1) and ξ2 = (ξ1,2, ξ2,2).

2. Convex Polygonal Source: these are characterized by
their spatial and temporal characteristics as follows:

f(x, t) = cF (x)δ(t− τ), (4)

where c, τ ∈ R are the intensity and activation time
respectively, and F (x) ∈ Ω is the region describ-
ing the location and shape of the convex polygo-
nal diffusion source. Such a convex region F (x) is
uniquely specified by its vertices, that is, the collection
{ξ1, ξ2, . . . , ξM}, with ξm = (ξ1,m, ξ2,m) ∈ Ω (see
also Figure 1).

3. NON-LOCALIZED SOURCE RECOVERY

We now outline our proposed schemes for recovering non-
localized source distributions (3) and (4) respectively, assum-
ing access to the following generalized measurements:

Q(k, r)=〈Ψk(x)Γr(t), f〉=
∫

Ω

∫
t

Ψk(x)Γr(t)f(x, t)dtdV,

(5)
where Ψk(x) = e−k(x1+jx2) and Γr(t) = e−jrt/T , with
k, r ∈ N; the reason for this choice will become apparent
in what follows. Specifically, we show that the above se-
quence of integral measurements may be appropriately mod-
ified to obtain a new sequence that is governed by a power
sum series, and as such can be efficiently solved using Prony’s
method [14–16], to recover the unknown source parameters.
We then demonstrate in Section 3.3, how to obtain such gen-
eralized measurements {Q(k, r)}k,r from the spatiotemporal
field samples.

3.1. Analytic Recovery of Line Sources

In what follows we demonstrate how to recover the unknown
straight line source parameters (c, τ, ξ1, ξ2) from the general-
ized measurements Q(k, r).

Proposition 1. Let Ψk(x) be the analytic function Ψk(x) =
e−k(x1+jx2), where k = 1, 2, . . . ,K with K ≥ 4 and let
Γ(t) = e−jrt/T , where r = 0, 1, . . . , R and R ≥ 1, then the
generalized measurements Q(k, r) in (5) can be used to re-
cover jointly, the unknown line source intensity, location and
activation time.

Proof. We begin the proof by considering the expression (5)
and substitute the source parameterization (3) as follows:

Q(k, r)= 〈Ψk(x)Γr(t), f〉=
∫

Ω

∫
t

Ψk(x)Γr(t)f(x, t)dtdV

= c

∫
t

Γr(t)δ(t− τ)dt

∫
Ω

Ψk(x)L(x)dV

= cΓr(τ)

∫
L(x)

Ψk(x)dS, (6)

the last equality follows from the fact that L(x) is only non-
zero along the shortest line joining the endpoints ξ1 and ξ2.
Next given a parametric representation of the line segment
such as

L (x(θ)) :

{
x1(θ) = (1− θ)ξ1,1 + θξ1,2

x2(θ) = (1− θ)ξ2,1 + θξ2,2
, θ ∈ [0, 1], (7)

we have that∫
L(x)

Ψk(x)dS =

∫ 1

0

Ψk(x(θ))

√(
dx1

dθ

)2

+

(
dx2

dθ

)2

dθ

=

√
(ξ1,2 − ξ1,1)

2
+ (ξ2,2 − ξ2,1)

2
∫ 1

0

Ψk(x(θ))dθ

= `(ξ1, ξ2)
(
e−k(ξ1,2+jξ2,2) − e−k(ξ1,1+jξ2,1)

)
.
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Thus∫
L(x)

Ψk(x)dS=− 1

k
`(ξ1, ξ2)

2∑
m=1

(−1)me−k(ξ1,m+jξ2,m),

(8)

where `(ξ1, ξ2) =

√
(ξ1,2−ξ1,1)2+(ξ2,2−ξ2,1)2

−k((ξ1,2−ξ1,1)+j(ξ2,2−ξ2,1)) . Substituting

(8) into (6) and recalling that Γr(t) = e−jrt/T yields the fol-
lowing power sum series,

−kQ(k, r) = `(ξ1, ξ2)ce−jrτ/T
2∑

m=1

(−1)me−k(ξ1,m+jξ2,m).

(9)
Thus the unknowns (c, ξ1, ξ2) can be recovered from the
sequence {−kQ(k, r)}Kk=1 using Prony’s method provided
K ≥ 4, whilst τ can be recovered from {−kQ(k, r)}Rr=1

providing R ≥ 1.

Notice that the choice Ψk(x) = e−k(x1+jx2) and Γr(t) =
e−jrt/T is key to obtaining the desired power sum series (9).

3.2. Analytic Recovery of Polygonal Sources

We now outline how to estimate the unknown parameters c, τ
and {ξm}Mm=1 for an M -sided convex polygonal diffusion
source given access to the generalized measurementsQ(k, r).
We firstly state the following lemmas that will be useful in
proving the scheme for recovering polygonal sources.

Lemma 1. Let Ψk(x) = e−k(x1+jx2), then

Ψk(x) =
1

k2
Ψ′′k(x), (10)

where (·)′ is used to denote the derivative with respect to the
complex variable ‘x1 + jx2’.

Proof. Follows from two applications of the complex deriva-
tive (w.r.t the complex variable ‘x1 + jx2’).

Lemma 2. Let Ψk(x) be analytic inside the convex polygon
F (x), with vertices {ξm}Mm=1, then [17]

∫
F (x)

Ψ′′k(x)dV =

M∑
m=1

amΨk(ξm). (11)

Proof. For a proof of this lemma, see [17–19]

Proposition 2. Let Ψk(x) be the analytic function Ψk(x) =
e−k(x1+jx2), where k = 1, 2, . . . ,K with K ≥ 2M and let
Γ(t) = e−jrt/T , where r = 0, 1, . . . , R and R ≥ 1, then
the generalized measurements Q(k, r) in (5) can be used to
recover jointly, the unknown intensity, vertices and activation
time of an M -sided polygonal diffusion source.

Proof. Consider now the expression (5) and substitute the
source parameterization (4) as follows:

Q(k, r)= 〈Ψk(x)Γr(t), f〉=
∫

Ω

∫
t

Ψk(x)Γr(t)f(x, t)dtdV

= c

∫
t

Γr(t)δ(t− τ)dt

∫
Ω

Ψk(x)F (x)dV

= cΓr(τ)

∫
F (x)

Ψk(x)dV

(i)
= cΓr(τ)

∫
F (x)

1

k2
Ψ′′k(x)dV

(ii)
=

1

k2
cΓr(τ)

M∑
m=1

amΨk(ξm)

where the equality (i) follows from Lemma 1 and (ii) from
Lemma 2. Multiplying through by k2, k 6= 0 and substituting
the expressions for Ψk(x) and Γr(t) gives

k2Q(k, r)= ce−jrτ/T
M∑
m=1

ame
−k(ξ1,m+jξ2,m) (12)

which is again a coupled power sum series. Thus the un-
knowns of the M -sided polygonal diffusion source can be re-
covered from {Q(k, r) : k = 1, . . . ,K, r = 0, . . . , R}k,r
using Prony’s method provided K ≥ 2M and R ≥ 1.

3.3. Computing the Generalized Measurements Q(k, r)

In the section we discuss how to stably obtain the desired
generalized measurementsQ(k, r) from measurements of the
field. This process has been outlined in [5], however we pro-
vide a summary herein for completeness. To begin we relate,
using Green’s second theorem, measurements of the diffusion
field u(x, t) along an arbitrary contour ∂Ω to the measure-
ments of the field within the contour as follows:∮
∂Ω

(Ψk∇u−u∇Ψk)·n̂∂ΩdS=

∫
Ω

(
Ψk∇2u−u∇2Ψk

)
dV, (13)

where n̂∂Ω is the outward pointing unit normal vector to the
boundary ∂Ω, Ω is the region enclosed by the contour ∂Ω
and Ψk is a function chosen to satisfy ∂Ψk

∂t + µ∇2Ψk = 0.
Specifically, this choice of Ψk(x) reduces (13) to,∫

Ω

∂

∂t
(uΨk)dV −µ

∮
∂Ω

(Ψk∇u− u∇Ψk)·n̂∂ΩdS=

∫
Ω

ΨkfdV,

(14)
when we substitute (1) and ∇2Ψk = − 1

µ
∂Ψk
∂t into (13)

and rearrange. Moreover this PDE is satisfied by any time-
independent analytic function, as a result and for stability
purposes we choose Ψk(x) = e−k(x1+jx2). Next multiply
both sides of (14) by a temporal sensing function Γ(t) and
then time-integrate over t ∈ [0, T ] to obtain,∫

Ω

∫
t

Ψk(x)Γr(t)f(x, t)dtdV =

∫
Ω

Ψk(x)U̇(x, T )dV

−µ
∮
∂Ω

(
Ψk(x)∇U(x, T )−U(x, T )∇Ψk(x)

)
·n̂∂ΩdS,

(15)

where U̇(x, T ) = Γ(T )u(x, T ) −
∫ T

0
∂Γ
∂t u(x, t)dt and

U(x, T ) =
∫ T

0
Γ(t)u(x, t)dt. By comparing equation (15)
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with (5), we observe that Q(k, r) =
∫

Ω
Ψk(x)U̇(x, T ) dV −

µ
∮
∂Ω

(
Ψk(x)∇U(x, T )− U(x, T )∇Ψk(x)

)
· n̂∂Ω dS. Con-

sequently, the generalized measurements can be obtained
from the diffusion field u(x, t). However given only spa-
tiotemporal samples ϕn,l, the generalized measurements have
to be approximated numerically from them. In particular,
Φn(tL)

def
= U(xn, tL) and similarly Φ̇n(tL)

def
= U̇(xn, tL)

can be numerically computed from the temporal measure-
ments {ϕn,l}Ll=0 of the n-th sensor. The spatial integrals
can then be approximated from the quantities {Φn(tL)}Nn=1

and {Φ̇n(tL)}Nn=1 using standard quadrature techniques as
discussed in [5].
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Fig. 2: Non-point source estimation using noiseless spa-
tiotemporal measurements obtained by arbitrarily placed sen-
sors. Field sampled at 10Hz for T = 7s. For the temporal
sensing function family, R = 5; (a) K = 4, and (b) K = 6.

4. SIMULATION RESULTS

The field due to the non-localized sources have been simu-
lated using COMSOL Multiphysics and spatiotemporal sam-
ples are obtained at arbitrary spatial locations. Specifically
we simulate the field due to a straight line diffusion source in
Figure 3 and a triangular source in Figure 4; in both cases the
sources are assumed to be instantaneous in time – we use a
COMSOL’s built-in Gaussian pulse function ‘gp1()’ with a
standard deviation of σ = 0.0025 to simulate a delta.

Having obtained the measurements using COMSOL, on
this data we apply the proposed algorithms to reconstruct
the non-point diffusion source spatially. The results of these
simulations are summarized in Figure 2, we can see that both
source types have been accurately reconstructed from the
noiseless field measurements. Furthermore, in order to in-
vestigate the robustness of the proposed algorithms to noise,
we artificially corrupt the measurements with additive white
Gaussian noise and employ the proposed non-point source
reconstruction algorithms. We perform 10 independent trials
using noisy data. For each indpendent trial we use a new
realization of sensor placement and a new sensor noise pro-
cess. As can be seen in Figures 3 and 4, the unknown source

parameters of interest (specifically the vertices and source
activation times) are recovered fairly reliably in this noisy
setting. Given noiseless field measurements, the non-point
sources are reconstructed almost perfectly (see Figure 2).
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(a) Location estimates.
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Fig. 3: Line source estimation using noisy spatiotemporal
measurements obtained by 45 arbitrarily placed sensors. Field
sampled at 10Hz for T = 10s, measurement SNR= 20dB.
For the spatial and temporal sensing functions family, K = 6
and R = 5 respectively.
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(a) Location estimates.
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Fig. 4: Triangular source estimation using noisy spatiotem-
poral measurements obtained by 90 arbitrarily placed sen-
sors. Field sampled at 10Hz for T = 10s, measurement
SNR= 35dB. For the spatial and temporal sensing functions,
K = 9 and R = 8 respectively.

5. CONCLUSIONS

In this paper we have presented algorithms for the recovery of
non-localized sources of diffusion fields from spatiotemporal
samples of the field observed through sensor networks. In
particular, we have shown how this estimation problem can
be reformulated as a non-linear system that can be efficiently
solved for the unknown source parameters using Prony’s
method. In so doing, we were able to devise suitable recovery
algorithms depending on the source shape. We also verified
the proposed schemes through numerical simulations, our
simulations confirm that we are able to recover the unknown
parameters from the noisy field samples.

4007



6. REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci, “A survey on sensor networks,” IEEE Com-
munications Magazine, vol. 40, no. 8, pp. 102–114, Aug
2002.

[2] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor
network survey,” Computer networks, vol. 52, no. 12,
pp. 2292–2330, 2008.

[3] Juri Ranieri and Martin Vetterli, “Sampling and re-
constructing diffusion fields in presence of aliasing,”
in Proc. IEEE International Conference on Acoustics,
Speech, And Signal Processing (ICASSP‘13), Vancou-
ver, Canada, May 2013.
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