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ABSTRACT

Finite–Rate–of–Innovation (FRI) sampling theory prescribes a proce-
dure for exact recovery of Dirac impulses from linear measurements in
the form of orthogonal projections of streams of Dirac impulses onto the
subspace of Fourier–bandlimited functions. This enables recovery of a
continuous time sparse signals at sub-Nyquist rates. In many cases, the
transform domain of interest may be more general than the Fourier do-
main. Recent work has extended FRI sampling theory to the spherical
Fourier Transform, fractional Fourier Transform and the Laplace Trans-
form. In this paper, we develop a broad FRI framework applicable to
a general class of transformations that includes Fourier, Laplace, Fres-
nel, fractional Fourier, Bargmann and Gauss–Weierstrass transforms,
among others. For this purpose, we consider the Special Affine Fourier
Transform (SAFT) which parametrically generalizes a number of well
known unitary transforms linked with signal processing and optics. We
first derive a version of Shannon’s sampling theory based on the convo-
lution structure tailored for the SAFT domain. Having identified the
subspace of SAFT–bandlimited functions, we apply FRI sampling the-
ory to the SAFT and study recovery of sparse signals, thus providing
a unified view of FRI sampling theory for a large class of disparately
studied operations.

IndexTerms— Finite–rate–of–innovation (FRI), fractional Fourier
domain, Shannon, sampling and special affine Fourier Transform.

1. INTRODUCTION

The year 2016 marks the Claude Shannon centenary. One of his many
elegant results is linked with the topic of Sampling Theory. This result
is at the heart of analog-to-digital conversion and states that a function
bandlimited in the Fourier domain is completely characterized by its
discrete measurements obtained at uniform time instants that are at least
separated by an interval inversely proportional to twice the maximum
frequency. This result has been extended far and wide. Two recurrent
themes ask the following questions:

Q. 1 Can we recover non–bandlimited signals?

Q. 2 What if the domain of investigation is something other than the
Fourier Transform?

Over the years both of these questions, as well as their combina-
tion, have received a lot of interest. The advent of wavelet trans-
forms revolutionized the way we think about sampling theory [1, 2].
The introduction of shift–invariant subspaces lead to an approxima-
tion theoretic formalization of sampling theory which relaxed the
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Table 1: SAFT, Unitary Transformations and Operations

SAFT Parameters (ΛS) Corresponding Transform[
a b 0
c d 0

]
= ΛΛΛL Linear Canonical Transform (LCT)[ cos θ sin θ p

− sin θ cos θ q

]
= ΛΛΛO

θ Offset Fractional Fourier Transform[ cos θ sin θ 0
− sin θ cos θ 0

]
= ΛΛΛθ Fractional Fourier Transform (FrFT)[

0 1 0
− 1 0 0

]
= ΛΛΛFT FourierTransform (FT)[ 0 1 p

− 1 0 q

]
= ΛΛΛO

FT Offset Fourier Transform[ 0 ȷ 0
ȷ 0 0

]
= ΛΛΛLT Laplace Transform (LT)[ ȷ cos θ ȷ sin θ 0

ȷ sin θ −ȷ cos θ 0

]
Fractional Laplace Transform[

1 b 0
0 1 0

]
Fresnel Transform[ 1 ȷb 0

ȷ 1 0

]
Bilateral Laplace Transform[

1 −ȷb 0
0 1 0

]
, b ≥ 0 Gauss–Weierstrass Transform

1√
2

[
0 e−ȷπ/2 0

−e−ȷπ/2 1 0

]
Bargmann Transform

SAFT Parameters (ΛS) Corresponding Signal Operation[
1/α 0 0
0 α 0

]
= ΛΛΛα Time Scaling[

1 0 τ
0 1 0

]
= ΛΛΛτ Time Shift[

1 0 0
0 1 ξ

]
= ΛΛΛξ Frequency Shift/Modulation

SAFT Parameters (ΛS) Corresponding Optical Operation[ cos θ sin θ 0
− sin θ cos θ 0

]
= ΛΛΛθ Rotation[

1 0 0
τ 1 0

]
= ΛΛΛτ Lens Transformation[

1 η 0
0 1 0

]
= ΛΛΛη Free Space Propagation[

eβ 0 0
0 e−β 0

]
= ΛΛΛβ Magnification[ cosh α sinh α 0

sinh α cosh α 0

]
= ΛΛΛη Hyperbolic Transformation

Fourier–bandlimitedness constraint to a more general requirement of
square–integrability of functions [3]. With respect to sampling of non-
bandlimited signals, Vetterli/Blu [4, 5] and co–workers introduced the
concept of finite-rate-of-innovation (FRI). The key idea is to consider
signals that are characterized by their degrees of freedom. For example,
a Dirac distribution is characterized by two degrees of freedom—its
location and its weight. Similarly, piecewise polynomials are defined
by the location and height of their discontinuities. Hence, recovery of
non–bandlimited signals in the context of FRI modeling amounts to
estimation of parameters linked with the degrees of freedom. A striking
feature of the FRI conceptualization is that a signal with finite degrees
of freedom can be recovered by sampling at sub-Nyquist rates [6]. Prior
to the emergence of the FRI model, the work of Li and Speed [7] dis-
cussed the recovery of Dirac impulses given its low–pass/bandlimited
samples. Their work relies on the observation that estimating Dirac
impulses is the Fourier dual of the spectral estimation problem [8].
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κΛS (t, ω) = K∗
b exp

(
− ȷ

2b

(
at2 + dω2 + 2t (p− ω)− 2ω (dp− bq)

))
, Kb =

1√
ȷ2πb

exp
(
j
dp2

2b

)
(1)

After the introduction of FRI in [4], an extension to exponential
spline families was proposed by Dragotti, Blu and Vetterli in [9]. This
paved the way for annihilation in time domain (as opposed to Fourier
domain [4]) via computation of moments. Shukla and Dragotti worked
on FRI principles linked with the Radon Transform in [10]. Bhandari
and Marziliano [11] proposed a generalization of FRI to the fractional
Fourier Transform (FrFT) domain. This result considered [4] as a special
case. A further generalization in phase space is due to Bhandari, Eldar
and Raskar [12] which deals with FRI in the context of super–resolution
in which the annihilation algorithm is substituted by a convex program.
An extension to spherical harmonic basis functionswas studied by Deslau-
riers and Marziliano in [13] and later, by Dokmanić and Lu in [14].

While complex exponentials—the Fourier basis functions—are ef-
ficient for modeling periodic phenomenon and are the eigen functions
of linear systems, in many areas of science and engineering, the con-
stituent ingredients of the signal of interest are more general and assume
the form of polynomial phase signals. Such signals can model non–
stationary/time-varying phenomenon and may be thought of as gener-
alized complex exponentials, eȷφ(t). For example, radar and sonar [18]
often transmit chirps for which case, φ (t) ∝ αt2 + βt + γ. Non–
destructive testing [19] uses chirps in the form of FrFT basis functions.
Similarly, holography benefits from the Fresnel Transform [20]. Other
examples include quantum optics and wave–physics. Consequently, a
number of models have been proposed in the literature that involve
polynomial phase based basis functions [15, 21].

The introduction of the fractional Fourier Transform (FrFT) to the
signal processing community by Almeida [15] led to several extensions
of Shannon’s sampling theory. For example, [16] and references therein
discuss a number of results involved with sampling theory of signals
bandlimited in the FrFT domain. In [17], Bhandari and Zayed provide
the first characterization of shift–invariant subspaces associated with the
FrFT domain.

In this paper, we extend the FRI sampling theory to a wide variety
of unitary transformations that frequently occur in signal processing
and optics and are capable of modeling sinusoidal as well as polynomial
phase signals. We do so by repurposing the FRI concept for the Special
Affine Fourier Transform (or the SAFT) which parametrically general-
izes all the unitary transformations and operations listed in Table. 1. We
show that a continuous time sparse signal of the form

s (t) =
∑K−1

k=0
µkδ (t− tk) (2)

can be recovered from its orthogonal projection onto the subspace of
SAFT–bandlimited functions. More precisely, we show that we can
recover s(t) from 2K + 1 equidistant samples of its low–pass version
in the sense of the SAFT domain. As in the case of the Fourier domain,
the orthogonal projection step amounts to low–pass filtering based on
a convolution structure devised for the SAFT domain. All our results
are backward compatible with previously known results linked with the
Fourier Transform as well as the fractional Fourier Transform.

2. THE SPECIAL AFFINE FOURIER TRANSFORM (SAFT)

Abe and Sheridan first introduced the SAFT in the context of math-
ematical physics and harmonic analysis [22, 23]. Mathematically, the
forward SAFT operation, that is, the mapping TSAFT : f → f̂ΛS is

defined by

f̂ΛS (ω) =

{
⟨f, κΛS (·, ω)⟩ b ̸= 0√
deȷ

cd
2

(ω−p)2+ȷωqx (d (ω − p)) b = 0

Special Affine Fourier Transform (SAFT)

(3)

where:

▷ Λ
(2×3)
S is the SAFT parameter matrixΛS =

[
Λ λ

]
formed

by augmenting the Linear Canonical Transform (LCT) matrix ΛL
(see Table 1, cf. [24]) and an offset vector λ such that,

Λ =

[
a b
c d

]
with ad− bc = 1 and λ =

[
p
q

]
.

▷ κΛS (t, ω) in (1) is the SAFT kernel parameterized by ΛS.

Much in the same way as the FT, the Dirac distribution is non–
bandlimited in the SAFT domain:

δ̂ΛS (ω)
(3)
= Kb exp

( ȷ

2b

(
dω2 − 2ω (dp− bq)

))
. (4)

Due to the additive property of the SAFT [25], the inverse–SAFT
is an SAFT evaluated using matrix Λinv

S with parameters,

Λinv
S

def
=

[
+d −b bq − dp
−c +a cp− aq

]
=

[
+d −b p0
−c +a q0

]
.

(5)
We define the inverse transform/iSAFT more compactly using,

f (t) = cΛinv
S

⟨
f̂ΛS , κΛinv

S
(·, t)

⟩
(6)

where cΛinv
S

= exp
(
ȷ
2

(
cdp2 + abq2 − 2adpq

))
.

2.1. SAFT Convolution Theorem

As is well known, convolution of two functions amounts to a mul-
tiplication of their respective spectrums in Fourier domain. This is
known as the convolution theorem. This is not the case for the SAFT
domain [26, 27]. We resolve this problem by adopting a version of the
convolution operator for the SAFT domain, denoted by “∗ΛS”, such
that, TSAFT [f ∗ΛS g] ∝ TSAFT [f ]TSAFT [g].

Definition 1 (SAFT Convolution/Filtering [27]) Let f and g be two
given functions and ∗ denote the usual convolution operator. The SAFT
convolution is defined by

(f ∗ΛS g) (t) = Kbe
−ȷ at2

2b

(
f (t) eȷ

at2

2b ∗ g (t) eȷ
at2

2b

)
. (7)

The convolution–product theorem for the SAFT [27] proves that

h (t)
(7)
= (f ∗ΛS g) (t)︸ ︷︷ ︸

SAFT Convolution

SAFT−−−→ ĥΛS (ω) = ΦΛS (ω) f̂ΛS (ω) ĝΛS (ω)︸ ︷︷ ︸
Product of SAFT Spectrums

,

where ΦΛS (ω) = K−1
b δ̂∗ΛS (ω) and δ̂ΛS (ω) is given by (4).
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2.2. Subspace of SAFT–bandlimted Functions

We now show that the orthogonal projection onto the subspace of
SAFT–bandlimited functions amounts to low–pass filtering using the
SAFT convolution in (7) followed by sampling. By SAFT–bandlimited
function, we refer to a signal which is bandlimited in the SAFT domain.

Let ∆ = b/Ω and let sinc (t) = sin(πt)
πt

. The family of functions,

φn (t) =
1

∆
e−ȷ

a(t2−(n∆)2)
2b e−ȷp t−n∆

b sinc
(
t

∆
− n

)Orthonormal Subspace of SAFT–bandlimted Functions

(8)

forms an orthonormal subspace of SAFT–bandlimted functions [28]
with maximum admissible frequency ωmax = πΩ = bπ/∆. To verify
orthonormality, assume that ∆ = 1, for simplicity. Then,

⟨φn, φk⟩ = eȷ
n2−k2

2b eȷp
n−k

b δn−k = δn−k.

To show bandlimitedness, we define the low–pass kernel φLP = φ0.
Then, we have the bandlimitedness property,

φ̂LP (ω) = Kbe
ȷ dω2

2b e−
ω
b
(dp−bq) Π

( ω

2πΩ

)
︸ ︷︷ ︸

Bandlimited

(9)

where Π(ω) = 1, |ω| ⩽ 1/2 and zero elsewhere.
Consequently, any function that belongs to the subspace of SAFT–

bandlimited functions may be exactly recovered via its orthogonal pro-
jection onto this subspace, that is, f=Pφf . This results in an extension
of Shannon’s Sampling Theorem for the SAFT–domain [28]:

Pφf =
∑
n∈Z

⟨f, φn⟩φn (t)

= e
−ȷ at2

2b

∆

∑
n∈Z

f (n∆) eȷ
a(n∆)2

2b e−ȷp t−n∆
b sinc

(
t

∆
− n

)
.

Extension of Shannon’s Sampling Theorem to SAFT Domain

In fact, the inner–product ⟨f, φn⟩ is linked with the SAFT convolu-

tion operation. Letψ (t) = (∆Kb)
−1e−ȷ at2

2b e−ȷp t
b sinc

(
− t

∆

)
be an

SAFT–bandlimited function. It is easy to verify that,

⟨f, φn⟩ = (f ∗ΛS ψn)|t=n∆,n∈Z. (10)

Hence ⟨f, φn⟩ amounts to low–pass filtering followed by sampling.

3. SAMPLING FRI SIGNALS IN THE SAFT–DOMAIN

Let φLP = φ0 = ∆−1e−ȷQ(t) sinc (t/∆) (cf. (8)) be a πΩ–
bandlimited sampling kernel with

Q (t) =
(
at2 + 2pt

)
/2b, (11)

and s (t) be the sparse/FRI signal defined in (2). Also, let

y (t) = (s ∗ΛS φLP) (t) (12)

be low–pass filtered measurements of (2) where ∆ = b/Ω is the sam-
pling rate and ∗ΛS is the SAFT convolution operation (cf. (7)). Suppose
that we observe N discrete measurements of the form,

y (n∆) , n = 0, . . . , N − 1. (Low–Pass Samples) (13)

We then show that we can recover s (t) from {y (n∆)}N−1
n=0 .

To show this, we first develop a series based representation of the
sparse signal in (2) which turns out to be a parametric representation.
Then, based on the series representation, we show that recovery of
a sparse signal from its low-pass measurements amounts to the well
known frequency estimation problem in the Fourier domain.

3.1. Special Affine Fourier Series (SAFS)

In the same way that
{
eȷkω0t

}
k∈Z are the basis functions for Fourier

Series of a T = 2π/ω0–periodic function, we are interested in devel-
oping a series representation for the SAFT domain.

We start with the identification of time domain basis functions
associated with the SAFT series. In order to define the basis func-
tions, we compute the time-domain response of a harmonic component
δ (ω − nω0). This is given by,

ΦΛS (t) =
⟨
δ (ω − nω0) , κΛinv

S
(ω, t)

⟩
≡ κ∗

Λinv
S
(nω0, t) . (14)

For a time–limited signal s (t) , t ∈ [0, T ), our goal is to obtain a series
expansion of the form,

s (t) =
∑

n
ŝΛS [n]κ

∗
Λinv

S
(nω0, t), (15)

where the SAFS coefficients are defined by

ŝΛS [n] = ⟨s, κΛS (·, nω0)⟩[0,T ]
. (16)

For this to be possible, we must enforce the orthonormality condition
on the basis functions involved, that is,⟨

κΛS (t, nω0) , κΛinv
S
(kω0, t)

⟩
[0,T ]

= δn−k.

Developing this equation and constraining the orthonormality prop-
erty, leads to the requirement ω0 = 2πb/T . Furthermore, we compute
the scaling constant that enforces orthonormality condition. Let,

mn,k =
⟨
κΛS (t, nω0) , κΛinv

S
(kω0, t)

⟩
.

With n = k, m0,0 = T/2π|b|. Hence, we scale the basis functions
by 1/

√
m0,0 to obtain an orthonormal basis. For simplicity, we will

assume that the constant Kb/
√
m0,0 has been absorbed into ŝΛS [n].

3.2. SAFT Series of Sparse Signals

We now use the SAFT series to obtain a series expansion of the of the
sparse signal s (t) specified in (2). Let T = |max tk − min tk| since
s (t) is time–limited. As a result, we compute the coefficients,

ŝΛS [n]
(15)
= ⟨s, κΛS (t, nω0)⟩[0,T ]

=

∫ T

0

s (t)κ∗
ΛS (t, nω0) dt

=
∑K−1

k=0
µkκ

∗
ΛS (tk, nω0), ω0 = 2πb/T. (17)

Back substituting this result into (15), we obtain the SAFT series,

s (t)
(16)
=

∑
n∈Z

K−1∑
k=0

µkκ
∗
ΛS (tk, nω0)κ

∗
Λinv

S
(nω0, t). (18)

Using the definition of the SAFT kernel in (1), we simplify the product
κ∗
ΛS (tk, nω0)κ

∗
Λinv

S
(nω0, t) to obtain,

κ∗
ΛS (tk, nω0)κ

∗
Λinv

S
(nω0, t)

(1)
= e−ȷQ(t)−Q(tk)eȷ

ω0n
b

(t−tk) (19)
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where Q(t) is defined in (11). Plugging into (18) results in,

s (t) = e−ȷQ(t)
∑

n∈Z

∑K−1

k=0
µke

ȷQ(tk)︸ ︷︷ ︸
ρk

e−ȷ
ω0ntk

b︸ ︷︷ ︸
un
k

eȷ
ω0nt

b

= e−ȷQ(t)
∑

n∈Z
ĥ [n] eȷ

ω0nt
b , (20)

where ĥ[n] is a sum of complex exponentials:

ĥ [n] =
∑K−1

k=0
µke

ȷQ(tk)eȷ
ω0n
b

tk =
∑K−1

k=0
ρku

n
k . (21)

A re-arrangement of the terms above shows an underlying Fourier Series
that is linked with the sparse signal,

s (t) eȷQ(t)︸ ︷︷ ︸
h(t)

=
∑

n∈Z
ĥ [n] eȷ

2π
T

nt ≡ h (t)︸ ︷︷ ︸
Fourier Series

. (22)

Hence, even when dealing with something very general such as the
SAFT, the sparse signal is characterized by an underlying Fourier Se-
ries whose coefficients are linked to a sum of complex exponentials.

3.3. Sampling and Reconstruction of FRI Signals in SAFT–domain

Our main result takes form of the theorem below. We describe a con-
structive procedure which leads to a recovery method for the sparse sig-
nal s (t). This is based on the fact that it is possible to estimate ĥ [n]
in (21) from low–pass samples in (13). Having estimated ĥ [n], we can
use the annihilating filter [4] or any other FRI technique to estimate the
FRI parameters {µk, tk}K−1

k=0 .

Theorem 1 (FRI Sampling in SAFT Domain) Let s (t) be a continuous–
time, FRI/sparse signal (2) and let φLP (t) = ∆−1e−ȷQ(t) sinc (t/∆)
be the low–pass filter associated with the SAFT domain with Q (t) =(
at2 + 2pt

)
/2b and ∆ = b/Ω. Suppose that we observe low–pass

filtered samples y (n∆) = (s ∗ΛS φLP) (n∆) , n = 0, . . . , N − 1.
Provided thatΛS is known andN ≥ T/∆+ 1, the samples y (n∆) are
a sufficient characterization of the FRI signal s (t) in (2).

First, by using the definition of s (t) in (20) and following (12),

y (t) =
e−j at2

2b

∆

(
e−j pt

b h (t) ∗ e−j pt
b sinc

(
∆−1t

))
=
e−ȷQ(t)

∆

∑
m∈Z

ĥ [m] eȷ
ω0mt

b

∫
sinc

(
∆−1t

)
e−ȷ

ω0mt
b dt

= e−ȷQ(t)
∑

|m|⩽fc

ĥ [m] eȷ
ω0mt

b , fc = ⌊ΩT/2b⌋ .

Next, we modulate the samples by eȷQ(t) to obtain a Fourier Series:

gn = y (n∆) eȷQ(n∆)︸ ︷︷ ︸
Modulated Low–Pass Samples

=
∑

|m|⩽fc

ĥ [m] eȷ
ω0m

b
n∆.

Low–Pass Samples of FRI Signal

(23)

From (21), the coefficients ĥ [m] , |m| ⩽ fc = ⌊ΩT/2b⌋ are a linear
combination of complex exponentials linked with FRI parameters.

We can now treat our recovery problem in two steps. First, given
{gn}N−1

n=0 , we recover ĥ[m] from (23). With ĥ[m] known, we estimate
the FRI parameters {µk, tk}K−1

k=0 using the annihilation principle [4,8].

Let g =
[
g0 · · · gN−1

]⊤ be the vector ofN samples. Then

we can write g
(23)
= Vh, where V is aN×2fc+1 Vandermonde matrix

with element [V]n,m = eȷ
2π∆
T

mn and h =
[
ĥ−fc · · · ĥ+fc

]⊤
is the vector of 2fc+1 coefficients we seek. With fc = ⌊ΩT/2b⌋we see
that T/∆ = 2fc. Provided thatN ≥ 2fc + 1 ≡ N ⩾ T/∆ + 1, we
can compute h = V+gwhere (·)+ denotes the pseudo–inverse. With h
known, we can estimate {µk, tk}K−1

k=0 associated with the sparse signal
in (20) using any of the spectral estimation methods [8].

Central to the theme of estimation of innovation parameters
{µk, tk}K−1

k=0 is the observation that the sequence h admits an auto–
regressive solution,

ĥ [m] +
∑K

k=1
r [k] ĥ [m− k] = 0, (24)

where the filter r is associated the annihilating polynomial [4, 5],

R (z) =
∏K−1

k=0
(1− uk/z) ≡

∑K

k=0
r [k] z−k.

The annihilation equation (24) can be solved provided that ĥ [m] ,m ∈
[−K,K] is known, implying that fc = ⌊ΩT/2b⌋ ⩾ K or,

N ⩾ T/∆ + 1. (25)

Whenever this sampling condition is true, we can estimate the K + 1
coefficient FIR filter r in (24) with which we construct R (z). The
roots of this polynomial are nothing but {ũk}K−1

k=0 [4]. We then es-
timate innovation parameter t̃k = (b/ω0m)∠ũk. With t̃k known,
we construct the quadratic polynomial Q (tk) =

(
at2k + 2ptk

)
/2b.

Now it remains to estimate weights µk which are simply the solution
to the following linear least–squares problem:

{µ̃k}K−1
k=0 = min

µk

∑
m

∣∣∣ĥ [m]−
∑K−1

k=0
µke

ȷQ(t̃k)ũm
k

∣∣∣2.
Remark (Generalization and Backward Compatibility) Even though
our result is quite general, the sampling condition (25) is the same for
the Fourier Domain. This is because dealing with SAFT domain still
allows us to use operations based on Fourier Series (20). Furthermore,
by appropriately parameterizing ΛS, one may now use the FRI result
for any of the operations described in Table 1. For example, with ΛS =
ΛΛΛFT andΛS = ΛΛΛFrFT, we obtain the results of [4] and [11], respectively.

4. CONCLUSION

We have described a very general recipe for extension of FRI sampling
theory to a wide class of mathematical operations listed in Table 1.
This was possible by developing a sampling theory related result for the
Special Affine Fourier Transforms (SAFT). More precisely, we showed
that the orthogonal projection of a signal onto the subspace of SAFT–
bandlimited functions is equivalent to low–pass filtering followed by
sampling. Based on this equivalence, we studied the representation of
FRI signals in the SAFT domain. Such signals assume a parametric rep-
resentation in the SAFT domain and the parameters may be estimated
using annihilating filters. Our work finds many interesting extensions
including the study of Strang–Fix kernels [9, 29] as well as analysis of
polynomial phase systems [18, 19] via FRI principles.
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