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ABSTRACT

In many signal processing applications we aim to track a
state of interest given available observations. Among exist-
ing techniques, sequential Monte Carlo filters are importance
sampling-based algorithms meant to propagate in time a set
of weighted particles which represent the a posteriori density
of interest. As is well known weights tend to degenerate over
time, and resampling is a commonly used rescue for discard-
ing particles with low weight. Unfortunately conditionally
independent resampling produces a set of dependent samples
and the technique suffers from sample impoverishment. In
this paper we modify the resampling step of particle filtering
techniques in order to produce independent samples per iter-
ation. We validate our technique via simulations.

Index Terms— Sequential Monte Carlo, Particle Filters,
resampling procedures

1. INTRODUCTION

Let Xk ∈ IRp andYk ∈ IRq be respectively a hidden and an
observed process. Letp(xk|y0:k) (or in shortpk|k) denote the
a posteriori filtering pdf ofxk giveny0:k = {yi}ki=0. We as-
sume that{Xk,Yk}k∈IN is a Hidden Markov Chain (HMC):

p(x0:k,y0:k) = p(x0)

k∏

i=1

fi|i−1(xi|xi−1)

k∏

i=0

gk(yi|xi).

We address the Bayesian filtering problem, which consists of
computingp(xk|y0:k). Recursive solutions are of particular
interest, and indeedpk|k can be computed frompk−1|k−1 by
the well known recursion (see e.g. [1] [2]):

p(xk|y0:k)=

gk(yk|xk)
∫
fk|k−1(xk|xk−1)p(xk−1|y0:k−1)dxk−1

p(yk|y0:k−1)
(1)

wherep(yk|y0:k−1) =
∫
Ndxk (hereN stands for the nu-

merator of Eq. (1)).
Many efforts have been devoted to the computation of Eq.

(1). Generally one needs to resort to approximations. Among
them sequential Monte Carlo (SMC) methods (see e.g. [3]
[2]) which are based on importance sampling (IS) propagate a

set of weighted particles{xi
0:k−1, w

i
k−1}Ni=1, leading to a dis-

crete approximation̂p(xk|y0:k) of p(xk|y0:k). Resampling is
widely used as a means to prevent weight degeneracy; how-
ever the particles produced in one time loop are not indepen-
dent, and resampling also leads to sample impoverishment,
since a single particle can be resampled several times, while
particles with low weights are eliminated. In this paper we
propose a modification of the resampling step of SMC algo-
rithms, which consists of producing (conditionally) indepen-
dent particles. We discuss the benefits and drawbacks of our
algorithm and validate our results via simulations. The rest of
this paper is organized as follows. Classical SMC algorithms,
which involve dependent resampling, are recalled in section
2. Our method is described in section 3. Section 4 is devoted
to simulations, and we end our paper with a conclusion.

2. PARTICLE FILTER WITH DEPENDENT
RESAMPLING

Let us first recall the rationale of particle filtering (PF), which
is based on the sequential application of IS techniques. At
time k − 1, we assume that we have a discrete approxima-
tion of p(x0:k−1|y0:k−1) given by a set of weighted samples
{xi

0:k−1, w
i
k−1}Ni=1, in which xi

0:k−1 ∼ q(x0:k−1|y0:k−1),

wi
k−1 ∝ p(xi

0:k−1,y0:k−1)/q(x
i
0:k−1|y0:k−1),

∑N
i=1 w

i
k−1 =

1. At time k, theith trajectory is first extended by a particle
sampled from an importance distributionq(xk|xi

0:k−1,y0:k)
(from now on we will takeq(xk|x0:k−1,y0:k) = q(xk|xk−1,
y0:k)) and next weighted by a weightwi

k proportional to
wi

k−1fk|k−1(x
i
k|xi

k−1) gk(yk|xi
k)/ q(x

i
k| xi

k−1,y0:k).
However, it is well known (see e.g. [4]) that the algo-

rithm degenerates when it is applied sequentially. More pre-
cisely, after some iterations only few particles have a signif-
icant non null weight. To address this weight degeneracy
problem, a common rescue is to use after the weighting step
a multinomial resampling step, which aims at discarding the
particles with low weights and duplicating those with high
weights (variations of the multinomial resampling techniques
have also been proposed, see e.g. [5–7]). The resampling step
is optional and is generally performed when the so-called ef-
fective sample size (ESS) criterion,ESS = 1/

∑N
i=1(w

i
k)

2

falls under a given threshold [8] [9]. Note that the resampling
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step is locally harmful (a single particle can be chosen sev-
eral times, and some particles are eliminated, which results
in support shrinkage); however it recreates diversity for the
subsequent iterations.

In summary, we obtain the sampling importance resam-
pling (SIR) algorithm, which is recalled below (the resam-
pling step is optional, hence notation(R)). Starting from
{xi

k−1, w
i
k−1}Ni=1:

S. for all i, 1 ≤ i ≤ N , samplẽxi
k ∼ q(xk|xi

k−1,y0:k);

W. for all i, 1 ≤ i ≤ N , set

wi
k ∝wi

k−1

fk|k−1(x̃
i
k|x

i
k−1

)gk(yk|x̃
i
k)

q(x̃i
k
|xi

k−1
,y0:k)

,
∑N

i=1 w
i
k = 1;

(R.) for all i, 1 ≤ i ≤ N , samplexi
k ∼ ∑N

j=1 w
j
kδx̃j

k

, set

wi
k = 1/N .

Let us now focus on the combination of the three steps
which composes one loopk − 1 → k of the SMC algorithm
when resampling is indeed performed. In that case, one can
show easily that given{xi

k−1}Ni=1, eachxi
k is drawn from a

common pdfq̃(xk|{xi
k−1}Ni=1) (or q̃(xk) in shorthand nota-

tion) where

q̃(x)=
N∑

i=1

∫
pi(x)

pi(x)
qi(x)

+
∑

j 6=i

pj(xj)
qj(xj)

∏

j 6=i

qj(x
j)dx1 · · ·xj , (2)

qi(x) = q(x|xi
k−1,y0:k), (3)

pi(x) = fk|k−1(x|xi
k−1)gk(yk|x) (4)

In other words, given{xi
k−1}Ni=1, all the particlesxi

k, 1 ≤
i ≤ N obtained using the PF algorithm are identically dis-
tributed; however, it is obvious that the obtained particles are
conditionally dependent (by construction they are sampledin-
dependently given{xi

k−1}Ni=1 and{x̃i
k−1}Ni=1, but are not in-

dependent given{xi
k−1}Ni=1 only). For instance, whenx1

k has
been sampled, there is a non-null probability thatx2

k = x1
k.

3. PF WITH INDEPENDENT RESAMPLING

3.1. Independent resampling

From the discussion of section 2, our objective is to replace
the set{xi

k}Ni=1 (obtained via a classical resampling step) by
a set of particles{xi

k}Ni=1 which, given{xi
k−1}Ni=1, are inde-

pendent and identically distributed according toq̃ in (2).
The reason why is as follows. In order to compare sets

{xi
k}Ni=1 and {xi

k}Ni=1, assume that one wants to compute
some moment

Θ =

∫
f(xk)p(xk|y0:k)dxk, (5)

and letΘ̂k andΘ̃k be the Monte Carlo estimates ofΘ built
respectively from the set{xi

k}Ni=1 produced by the particle

filter with multinomial resampling described in Section 2, and
that which would be deduced from samples{xi

k}Ni=1 drawn
(conditionally) independently from̃q(x):

Θ̂k =
1

N

N∑

i=1

f(xi
k), (6)

Θ̃k =
1

N

N∑

i=1

f(xi
k) (7)

Then given{xi
0:k−1, w

i
k−1}Ni=1, one can show easily that

E(Θ̂k) = E(Θ̃k), (8)

var(Θ̂k) = var(Θ̃k) +
N − 1

N
var

(
N∑

i=1

wi
kf(x̃

i
k)

)
(9)

In other words, the estimator̃Θk deduced from independent
samples outperformŝΘk whateverf(.) in (5) (of course in
practice the estimate of (5) is obtained before resampling,
but (8) enables us to appreciate the interest of{xi

k}Ni=1 over
{xi

k}Ni=1).
The idea of obtaining independent particles can be simply

illustrated in the particular case of the SIR algorithm with
optimal importance distribution. In this case, the importance
distributionq(xk|xi

k−1,y0:k) coincides withp(xk|xi
k−1,yk)

∝ fk|k−1(xk|xi
k−1)gk(yk|xk), and the weightswi

k are
proportional to wi

k−1p(yk|xi
k−1) where p(yk|xi

k−1) =∫
fk|k−1(xk|xi

k−1)gk(yk|xk)dxk, and thus no longer de-
pend on{xi

k}Ni=1. For this setting,̃q(x) in (2) reduces to the
mixture pdf

q̃(x) =

N∑

i=1

wi
kp(xk|xi

k−1,yk). (10)

Consequently, one can draw conditionally independent sam-
ples{xi

k}Ni=1 according toq̃(x) by a simple (and fast) two-
step procedure: for eachi, 1 ≤ i ≤ N , select an indexji ∼
Pr(ji = p) = wp

k, and then samplexi
k ∼ p(xk|xji

k−1,yk).
This algorithm coincides with the fully adapted PF (FA-APF)
algorithm which is known to outperform the SIR algorithm
with optimal importance distribution [10] [11].

Unfortunately, in the general case we do not have a
closed-form expression of̃q(x) in (2). However, it remains
possible to obtain samplesxi

k drawn independently accord-
ing to q̃(x). Starting from{xi

0:k−1, w
i
k−1}Mi=1 (the reason

why we use notationM 6= N will be explained soon) let us
consider the following procedure:

S. for all i, j, 1 ≤ i, j ≤ M , samplẽxi,j
k ∼ q(xk|xi

k−1,y0:k)

W. for all i, j, 1 ≤ i, j ≤ M , set wi,j
k ∝ wi

k−1×
fk|k−1(x̃

i,j

k
|xi

k−1
)gk(yk|x̃

i,j

k
)

q(x̃i,j

k
|xi

k−1
,y0:k)

,
∑N

i=1 w
i,j
k = 1;

(R.) for all j, 1 ≤ j ≤ M , samplexj
k ∼∑N

l=1 w
l,j
k δ

x̃
l,j

k

; set

x
j
k = x

j
k andwj

k = 1/N .
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3.2. Comments and remarks

Let us comment this algorithm. By construction all particles
{xi

k}Mi=1 are different, so the algorithm no longer suffers from
support shrinkage.

On the other hand, even if we start with an approximation
of sizeM , the algorithm relies on the sampling and weight-
ing of M2 new particles, so involves an extra computational
cost if we compare it with the particle filter of section 2 when
M = N . However, note that the resampling step is not neces-
sary performed at each iteration; consequently the above al-
gorithm can be performed only when resampling is necessary.
In addition, and in the spirit of Island particle filter [12] the
independent resampling mechanism can easily be parallelized
(note that we donot run several particle filters in parallel; see
comments below).

Finally, our resampling technique raises one question
which will be addressed in our simulations. Is it possible to
selectM ≤ N such that the computational cost of the two
resampling procedures (dependent vs. independent) is of the
same order? Ideally, we would like to improve the perfor-
mances of classical PF whenM =

√
N and indeed we will

see that it is actually possible in some cases.

3.3. Connection with existing works

Let us now discuss how our proposed independent resampling
scheme differs from recent filtering methodologies based on
”(Sequential or not) MC within SMC”. The Island particle fil-
ter [12] provides a means of parallelizing SMC methods. In-
stead of considering a unique set ofN particles, this method
consists of dividing the particles population intoN1 sets (de-
noted islands) ofN2 particles each (withN = N1N2). Each
island of particles evolves according to the standard SMC
framework, thus allowing for a complete parallelization ofthe
islands. However, as discussed in [12], the bias which occurs
from the division of the population (i.e. small islands of size
N2) can be reduced by performing an additional resampling
step at the island level. This method is clearly different from
our proposition since it can still suffer from the sample impov-
erishment of the intra (and inter) island resampling stages.

Finally, in [13] it is proposed to use anempiricaldistribu-
tion obtained from a local (S)MC algorithm as proposal distri-
bution of a standard or fully-adapted APF algorithm. A quite
similar algorithm was previously proposed in [14] in order to
solve a complex filtering problem. In this so-called Nested
SMC (NSMC) framework, a local (S)MC algorithm is used
for each particle path-spacexi

0:k−1 in order to obtain an em-
pirical approximation of the optimal importance distribution
and an approximation of the importance weights. Our propo-
sition differs from such contributions in the sense that our
aim is to ensure a set of (conditionally) independent resam-
pled particles at the end of each iteration. With the NSMC,
such an independence property is clearly not ensured since
the sampling stage consists of generatingN particles from

an empirical measure (i.e. a discrete approximation based on
a finite number of local particles from the nested algorithm)
that could be identical for several draws. As a consequence,
there is a non-null probability to select exactly the same lo-
cal particle for different global particles. Finally, as discussed
previously, our strategy can be used only when this is nec-
essary, thus leading to an efficient and easily implementable
adaptive framework.

4. SIMULATIONS

In this section we compare our approach with the classi-
cal particle filter in the framework of target tracking with
range-bearing measurements. The state-vector (position
and velocity in Cartesian coordinates) is defined asxk =
[px,k, ṗx,k, py,k, ṗy,k]

T and estimated from range-bearing
measurementsyk = [ρk, θk]

T . The target state evolution and
observation equations read

xk = Fkxk−1 + uk

yk =

(√
p2x,k + p2y,k

arctan
py,k

px,k

)
+ vk

whereFk =




1 τ 0 0
0 1 0 0
0 0 1 τ
0 0 0 1


, x0, u1, · · · , uk, v0, · · · , vk

are independent withuk ∼ N (04,Q), vk ∼ N (02,R),

Q = σ2
Q




τ3

3
τ2

2 0 0
τ2

2 τ 0 0

0 0 τ3

3
τ2

2

0 0 τ2

2 τ


 ,R =

(
σ2
ρ 0
0 σ2

θ

)
,

τ = 1. We compare the performances of estimates of inter-
est x̂k by computing their averaged root mean square error
(RMSE) w.r.t.xk onNMC = 100 simulations,

RMSEk =

√√√√ 1

NMC

NMC∑

n=1

‖x̂k − xk‖2 (11)

4.1. Independent resampling withM = N

We first intend to confirm that independent resampling
gives better performance than classical resampling for a
given number of particlesN . We useq(xk|xk−1,y0:k) =
fk|k−1(xk|xk−1) and we resample at each time step.

For M = N = 500 particles overT = 100 time steps,
τ = 1, σQ =

√
10, σρ = 1 andσθ = π

180 , NMC = 100, the
averaged RMSEs are displayed in Fig. 1. As expected this re-
sult shows that the performance of independent resampling is
significantly better than dependent resampling; moreover the
performance improvement increases over time which is due in
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Time step

R
M
S
E
(l
og
)

1009080706050403020100
1

10

100

1000
IS i.d. Resampling, estimator before resampling
IS i.d. Resampling, estimator after resampling
Island PF, estimator before resampling
Island PF, estimator after resampling
IS i.i.d. Resampling, estimator before resampling
IS i.i.d. Resampling, estimator after resampling

Fig. 1. Example of RMSE performance between PF with de-
pendent and independent resampling with same number of
particlesM = N = 500. Estimates before and after resam-
pling coincide. For comparison, the RMSE of a basic island
particle filter (Algorithm (1) from [12]) with5 islands con-
taining100 particles each is shown as well.

this simulation to the high process noise; the gain in particle
diversity due to our resampling method enables to better track
the target in difficult scenarios. Conversely, other tests have
shown that forσQ = 1 or less the difference between the two
resampling methods vanishes. This is because in such a sce-
nario, the trajectory becomes linear so the estimation is well
performed by a classical particle filter.

4.2. Independent resampling with varying number of
particles

On the other hand, we consider a fixed number of sam-
plesN and we perform our independent resampling method
with M =

√
N in scenarios where the degeneration phe-

nomenon affects the classical particle filter. In particu-
lar, this phenomenon appears whenq(xk|xk−1,y0:k) =
fk|k−1(xk|xk−1) and the variance of the measurement noise
is small compared to that of the process noise. It has been
observed that our independent resampling technique can pro-
duce better performance at a lower number of samples. In
Fig. 2 we have displayed the performance of our independent
resampling technique as a function ofM , with σQ =

√
10,

σρ = 0.05 andσθ = π
3600 . Independent resampling performs

better atM =
√
N for N = 100 andN = 1000, and con-

verges quickly asM increases to the same performance as
N = 10000. These results are mainly due to the tendency
of classical resampling to duplicate only one particle when
their weights are degenerated, while independent resampling
ensures that the algorithm duplicatesM of them, keeping a
better particle diversity.

M (number of particles of independent resampling)

R
M
S
E
(l
og
)

100908070605040302010

10

100

Classical PF, N = 100
Classical PF, N = 1000
Classical PF, N = 10000
Island PF, 5 islands
Independent resampling PF

Line showing M =
√

100

Line showing M =
√

1000

Line showing M =
√

10000

Fig. 2. Example of RMSE performance between an in-
dependent resampling particle filter with varying number
of particles M, and classical particle filters withN =
100, 1000, 10000. The green vertical lines show values of√
100,

√
1000,

√
10000 in order to see the performance of the

independent resampling particle filter whenM =
√
N . For

comparison, the RMSE of a basic island particle filter (Algo-
rithm (1) from [12]) with 5 islands containingM

2

5 particles
each is shown as well.

5. CONCLUSION

In this paper we proposed to modify the resampling step of
PF in order to produce particles which, given the weighted set
of particles at previous instant, are still drawn from the same
pdf as those produced by classical multinomial resampling,
but are moreover independent. We discussed independent vs.
dependent resampling, proposed an implementation of our re-
sampling technique, and validated our results by simulations.
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