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ABSTRACT set of weighted particle§x} , ,, wi ,}Y,, leading to a dis-
srete approximatiop(xx|yo:x) of p(xx|yo.x). Resampling is
widely used as a means to prevent weight degeneracy; how-

ing techniques, sequential Monte Carlo filters are impaean ever the gartlcles pl)_roducl:ed Im (éne time Ioolp are not mdhepen-
sampling-based algorithms meant to propagate in time a sgfm' and resampling also leads to sample impoverishment,
of weighted particles which represent the a posteriori itfens since a smgle partlclg can be re;ampled several timese whil
of interest. As is well known weights tend to degenerate oveP2rticles with low weights are eliminated. In this paper we

time, and resampling is a commonly used rescue for discardOPose & modification of the resampling step of SMC algo-

ing particles with low weight. Unfortunately conditiongall rithms, W_h'Ch consists of producing (_condmonally) inep
independent resampling produces a set of dependent samp t partlcles. Wg discuss the ben'eflt.s and Qrawbacks of our
and the technique suffers from sample impoverishment. Iﬁfgonthm gnd vallo!ate our results via smulatlons. Theqés
this paper we modify the resampling step of particle filtgrin this paper is organized as follows. Classical SMC algorsthm

techniques in order to produce independent samples per itégh'c():h |nvoI;]/edd_ep§nde_nbt rccja_samph_ng, gresrec_allei _|n§act|od
ation. We validate our technique via simulations. - Our method is cescribed in section 3. Section 4 Is devote

to simulations, and we end our paper with a conclusion.

In many signal processing applications we aim to track
state of interest given available observations. Amongtexis

Index Terms— Sequential Monte Carlo, Particle Filters,
resampling procedures
2. PARTICLE FILTER WITH DEPENDENT

1. INTRODUCTION RESAMPLING

Let X, € IR? andY;, € IR? be respectively a hidden and an Let us first recall the rationale of particle filtering (PFhiah
observed process. Lptx|yo.x) (or in shortpy,,,) denote the  is based on the sequential application of IS techniques. At
a posteriori filtering pdf ok, givenyo., = {yi}is:(). We as- time k£ — 1, we assume that we have a discrete approxima-
sume tha{ Xy, Y} }ren is a Hidden Markov Chain (HMC):  tion of p(xo..—1]yo:x—1) given by a set of weighted samples
{x4—1> Wi 1Ly, iInwhichxg,y ~ q(xou-1youn—1),
u u w/ic—1 X p(xz);k—uy0:k—1)/Q(X§):k—1|y0:k—1)v Zf\; wi—l =
P(Xo:k: Your) = p(%0) Hfi‘i‘l(xﬂx”l) Hgk(yi‘xi)’ 1. Attime k, theit™® trajectory is first extended by a particle
= = sampled from an importance distributigtxy,|x%., |, ¥o:x)
We address the Bayesian filtering problem, which consists dffrom now on we will takey(xx |X0:k—1,Yo:x) = ¢(Xk|Xk—1,
computingp(xx|yo.r). Recursive solutions are of particular yo.;)) and next weighted by a weight! proportional to
interest, and indeeg,;, can be computed fromy, ;1 by wj,_ feje—1(X},I1x5_1) 9r (YRIX})/ a(X| X _1, Yok)-

the well known recursion (see e.g. [1] [2]): However, it is well known (see e.g. [4]) that the algo-
rithm degenerates when it is applied sequentially. More pre

p(Xklyox)= cisely, after some iterations only few particles have aigign
k(Y k|%k) [frp—1 Kk [Xp—1)P(Xk—1]Y0:k—1) dXp—1 icant non null weight. To address this weight degeneracy

@) problem, a common rescue is to use after the weighting step
a multinomial resampling step, which aims at discarding the

wherep(yi|yo:k—1) = [Ndx, (hereN stands for the nu- particles with low weights and duplicating those with high

merator of Eq. (1)). weights (variations of the multinomial resampling techugg
Many efforts have been devoted to the computation of Eghave also been proposed, see e.g. [5-7]). The resamplimg ste

(1). Generally one needs to resort to approximations. Among optional and is generally performed when the so-called ef

them sequential Monte Carlo (SMC) methods (see e.g. [3ective sample size (ESS) criterioRSS = 1/Zij\i1(wi)2

[2]) which are based on importance sampling (IS) propagate falls under a given threshold [8] [9]. Note that the resangpli

p()’kb’o:k—l)
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step is locally harmful (a single particle can be chosen sefilter with multinomial resampling described in Section 8da
eral times, and some particles are eliminated, which resulthat which would be deduced from samplgg. }¥., drawn
in support shrinkage); however it recreates diversity e t (conditionally) independently frorji(x):
subsequent iterations.

In summary, we obtain the sampling importance resam- 0, = 1 Zf(xi) (6)
pling (SIR) algorithm, which is recalled below (the resam- )
pling step is optlonal hence notatiqiR)). Starting from

N
~ 1 ,
E SN/ AR O, = NZf(i;) @)
. . =1
S. foralli, 1 <i< N, samplex! ~ q(Xi|x._1,Vo:k); ) , ) ' ]
b A0k Yo Then given{x{ , ,,wi_,},, one can show easily that
W. forallz,1 <i <N, set

. ) % It %1 ) E(ék) = E(ék) (®)
wj ol PR R B = ) )
. v _ var(Qf) = var(Og) + <Z wi f(X )(9)
(R.) foralli, 1 <i < N, samplexj, ~ 375, wjdy;, set
k

wj, = 1/N. In other words, the estlmat@k deduced from independent
Let us now focus on the combination of the three stepsamples outperformé)k whateverf(.) in (5) (of course in
pracnce the estimate of (5) is obtained before resampllng,

which composes one lodp— 1 — & of the SMC algorithm
when resampling is indeed performed. In that case, one ¢ out §8) enables us to appreciate the interesteif},; over
k

show easily that givedx; _,}¥ |, eachx! is drawn from a
common pdfg(xy|{x:_,}¥,) (or §(xx) in shorthand nota-
tion) where

The idea of obtaining independent particles can be simply
illustrated in the particular case of the SIR algorithm with
optimal importance distribution. In this case, the impoc&a
distributiong(x |x}, ,,yo.x) coincides withp(x|xj,_,yx)

N .
-3 / - Tl L@ fupor (/X )ar(yrlxe), and the weightsu) are
=7 e T Z i (xT) i proportional to wi_,p(yx|xi ;) where p(yx|x, ;) =
Gi(%) = g% 1, You), 3) I Frpe—1(%k|xt_1) gk (yr|xk)dxy, and thus no longer de-

; pend on{x: }}¥ . For this settingg(x) in (2) reduces to the
Pi(%) = frpp—1(x[x5_1) gk (y&[x) (4 mixture pdf

In other words, giver{x: 1%, all the particlesx, 1 < N

i < N obtained using the PF algorithm are identically dis- G(x) = wip(xlxi 1, yn)- (10)
tributed; however, it is obvious that the obtained particiee =1

conditionally dependent (by construction they are samipled Consequently, one can draw conditionally independent sam-
dependently giverix; |}~ and{x; ,}¥, butarenotin- Pples{x;}}L, according toj(x) by a simple (and fast) two-
dependent givefix; , }2V, only). For instance, whex}, has ~ Step procedure: for eadhl < i < N, select an index’ ~

been sampled, there is a non-null probability tkat= x}.. Pr(j* = p) = w¥, and then samplg}, ~ p(xklxg;l,}’k)-
This algorithm coincides with the fully adapted PF (FA-APF)
3. PE WITH INDEPENDENT RESAMPLING algorithm which is known to outperform the SIR algorithm
with optimal importance distribution [10] [11].
3.1. Independent resampling Unfortunately, in the general case we do not have a

closed-form expression @f(x) in (2). However, it remains
From the discussion of section 2, our objective is to replacgossible to obtain sampleg, drawn independently accord-
the set{x} })¥, (obtained via a classical resampling step) bYing to G(x). Starting from{x},, ,,wi ,}M, (the reason

a set of par“‘:_'ef{xk}N ; which, given{xj_,}}Y,, are inde- why we use notatiod/ # N will be explained soon) let us
pendent and |dent|Ca”y dIStrIbuted aCCOrdlng]m (2) Consider the f0||owing procedure:

The reason why is as follows. In order to compare sets
{xi}N¥ | and {x;}~ ,, assume that one wants to compute

some moment W. for all i,j, 1 < i,j < M, setw,’ o wi x

S. foralli,j, 1 <i,j < M,samplex}’ ~ q(xx|x} |, yo.x)

fk\k—](i;;jv‘x;c—l)gk(ylc‘i;c’]) EN
@:/f(xk)p(xk\yO:k)de (%) A& XL yow) i=1

(R.) forall j, 1< j < M,samplex] ~ 1, wi;jéii_,j; set

1

and Iet@;€ and (:),C be the Monte Carlo estimates 6f built P ;
respectively from the sefxi }¥, produced by the particle x), = X andwy, = 1/N.
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3.2. Comments and remarks an empirical measure (i.e. a discrete approximation based o
a finite number of local particles from the nested algorithm)
that could be identical for several draws. As a consequence,
there is a non-null probability to select exactly the same lo

Let us comment this algorithm. By construction all particle
{xi 1M, are different, so the algorithm no longer suffers from

supgorilfhrl?rlfagﬁ. d it tart with imati cal particle for different global particles. Finally, asdiussed
nthe other hand, éven it we start with an approxima Iorbreviously, our strategy can be used only when this is nec-

.Of SlzeMQ’ the a'gof'thm rellgs on the sampling and We!ght'essary, thus leading to an efficient and easily implemeatabl
ing of M* new particles, so involves an extra computational

cost if we compare it with the particle filter of section 2 Whenadaptlve framework.
M = N. However, note that the resampling step is not neces-
sary performed at each iteration; consequently the abave al
gorithm can be performed only when resampling is necessar
In addition, and in the spirit of Island particle filter [12]e

independent resampling mechanism can easily be paratieliz

note that we dmotrun several particle filters in parallel; see LS . . . .
( P P and velocity in Cartesian coordinates) is definedxas=

comments below). . ,
) &pz,k,ﬁzﬁk,p%k,]ﬁy,k]T and estimated from range-bearing

Finally, our resampling technique raises one questio o 0.7 The t ¢ stat uti d
which will be addressed in our simulations. Is it possible toneasurements;, = [px, 6] . The target state evolution an

selectM < N such that the computational cost of the two observation equations read
resampling procedures (dependent vs. independent) igof th
same order? Ideally, we would like to improve the perfor-

mances of classical PF whéd = /N and indeed we will (\/piﬂk +pf,7k) L,

4. SIMULATIONS

Yr'] this section we compare our approach with the classi-
cal particle filter in the framework of target tracking with
range-bearing measurements. The state-vector (position

xp = Frxp_1+u

Ye =

see that it is actually possible in some cases. arctan ;wik
x,k
3.3. Connection with existing works 1 700
01 00
Let us now discuss how our proposed independent resamplintereF, = 0 0 1 7| XU Uk Vo, oo, Vi
scheme differs from recent filtering methodologies based on 00 0 1

SISt
Ao o

o o 2N,
w“‘ww“‘mo o

”(Sequentiallor not) MC within SMC”.. 'I_'he Island particle fil- ;.o independent with, ~ A’(04, Q), vi ~ A'(02, R),
ter [12] provides a means of parallelizing SMC methods. In-
stead of considering a unique setMfparticles, this method
consists of dividing the particles population intg sets (de- 2 0
noted islands) ofV, particles each (withiv = N; N,). Each Q= crf2 ,R= (OP 02) ,
island of particles evolves according to the standard SMC 0
framework, thus allowing for a complete parallelizatiorifoe
islands. However, as discussed in [12], the bias which @ccur . .

o L . 71 = 1. We compare the performances of estimates of inter-
from the division of the population (i.e. small islands ofesi . ) .

- - ._estx; by computing their averaged root mean square error
N>) can be reduced by performing an additional resamplln?RMSE) Wrtx 0N Nures — 100 simulations
step at the island level. This method is clearly differentir Xk Me ’
our proposition since it can still suffer from the sample onp Nero
erishment of the intra (and inter) island resampling stages RMSE, — 1 Z % — %62 (11)
Finally, in [13] it is proposed to use ampiricaldistribu- Nue =~

tion obtained from a local (S)MC algorithm as proposal distr
b_uti_on ofa s?andard or fuII_y-adapted APF glgorith_m. A quite4.1I Independent resampling withAf — N
similar algorithm was previously proposed in [14] in order t
solve a complex filtering problem. In this so-called NestedWe first intend to confirm that independent resampling
SMC (NSMC) framework, a local (S)MC algorithm is used gives better performance than classical resampling for a
for each particle path-spaesg, , _, in order to obtain an em- given number of particlesV. We useq(xy|xx—1,yo:x) =
pirical approximation of the optimal importance distrilomt  fy,,— (xx|xx—1) and we resample at each time step.
and an approximation of the importance weights. Our propo- For M = N = 500 particles ovefI’ = 100 time steps,
sition differs from such contributions in the sense that ourr =1, o = V10, o, =1andoy = 150 Ve = 100, the
aim is to ensure a set of (conditionally) independent resamaveraged RMSEs are displayed in Fig. 1. As expected this re-
pled particles at the end of each iteration. With the NSMCsult shows that the performance of independent resamg@ing i
such an independence property is clearly not ensured sinsggnificantly better than dependent resampling; moredwer t
the sampling stage consists of generati¥igparticles from  performance improvement increases over time which is due in
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Fig. 1. Example of RMSE performance between PF with deFig. 2. Example of RMSE performance between an in-
pendent and independent resampling with same number dependent resampling particle filter with varying number
particlesM = N = 500. Estimates before and after resam-of particles M, and classical particle filters withv' =
pling coincide. For comparison, the RMSE of a basic islandl00, 1000, 10000. The green vertical lines show values of
particle filter (Algorithm (1) from [12]) with5 islands con- /100, v/1000, v/10000 in order to see the performance of the
taining 100 particles each is shown as well. independent resampling particle filter wha&h = +/N. For
comparison, the RMSE of a basic island particle filter (Algo-

o . ) . o _rithm (1) from [12]) with 5 islands containingz‘g—z particles
this simulation to the high process noise; the gain in p@rtic o5ch is shown as well.

diversity due to our resampling method enables to bettektra
the target in difficult scenarios. Conversely, other testgeh
shown that for, = 1 or less the difference between the two
resampling methods vanishes. This is because in such a sq
nario, the trajectory becomes linear so the estimation It we
performed by a classical particle filter.

5. CONCLUSION

R this paper we proposed to modify the resampling step of
PF in order to produce particles which, given the weightéd se
of particles at previous instant, are still drawn from thmea

pdf as those produced by classical multinomial resampling,
but are moreover independent. We discussed independent vs.
dependent resampling, proposed an implementation of eur re

) ) sampling technique, and validated our results by simuiatio
On the other hand, we consider a fixed number of sam-

ples N and we perform our independent resampling method
with M = +/N in scenarios where the degeneration phe-

nomenon affects the classical particle filter. In particu- [1] Y.C.Ho and R. Lee, “A Bayesian approach to problems

lar, this phenomenonh appears W?@S‘kb‘k—l’yoik) = in stochastic estimation and contrdEEE Transactions
Srig—1(xk[xx—1) and the variance of the measurement noise  , Atomatic Contrglvol. 9, pp. 333-339, 1964.

is small compared to that of the process noise. It has been
observed that our independent resampling technique can pro[2]
duce better performance at a lower number of samples. In
Fig. 2 we have displayed the performance of our independent
resampling technique as a function &f, with 7o = /10,

o, = 0.05 andoy = 3555 Independent resampling performs

better atM = /N for N = 100 and N = 1000, and con-

verges quickly as\/ increases to the same performance as
N = 10000. These results are mainly due to the tendency
of classical resampling to duplicate only one particle when
their weights are degenerated, while independent resagpli [4] A. Doucet, S. J. Godsill, and C. Andrieu, “On sequential
ensures that the algorithm duplicatés of them, keeping a Monte Carlo sampling methods for Bayesian filtering,”
better particle diversity. Statistics and Computingol. 10, pp. 197-208, 2000.

4.2. Independent resampling with varying number of
particles
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