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ABSTRACT
Monte Carlo methods, such as Markov chain Monte Carlo
(MCMC) algorithms, have become very popular in signal pro-
cessing over the last years. In this work, we introduce a
novel MCMC scheme where parallel MCMC chains inter-
act, adapting cooperatively the parameters of their proposal
functions. Furthermore, the novel algorithm distributes the
computational effort adaptively, rewarding the chains which
are providing better performance and, possibly even stopping
other ones. These extinct chains can be reactivated if the al-
gorithm considers it necessary. Numerical simulations show
the benefits of the novel scheme.

Index Terms— Interacting Parallel MCMC, Adaptive
MCMC, cooperative adaptation, Bayesian inference.

1. INTRODUCTION

Markov Chain Monte Carlo (MCMC) algorithms [1] are
widely employed in signal processing and communications
for Bayesian inference and optimization [2, 3, 4, 5, 6].
They draw random samples from a complicated multidimen-
sional target probability density function (pdf), π(x) with
x ∈ D ⊆ Rd, generating a Markov chain which converges
to π(x). The performance, i.e., the speed of the convergence,
depends strictly on the choice of a suitable proposal function
q(x), and more specifically, on the discrepancy between q(x)
and π(x).

Speeding up the convergence has motivated an intense re-
search activity. On the one hand, one active research line
considers the design of an adaptive proposal density within
MCMC techniques. Several schemes have been developed
in order to tune online the parameters of the proposal den-
sity, learning them from the previously generated samples
[7, 8, 5, 6]. On the other hand, the use of several parallel
chains instead of a single long chain has been studied for
different reasons. First of all, employing parallel chains al-
lows the use of different proposal pdfs. Moreover, another
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important motivation is the interest in the implementation of
MCMC techniques within a parallel architecture [9, 10, 11].
Finally, a third reason is to speed up the exploration of the
state space [12, 4, 13, 14, 11]. Several works in the literature
are focused on producing an interaction among the different
parallel chains [15, 7, 13, 14, 16]. The exchange of infor-
mation among the chains can yield jointly two related bene-
fits: produce a faster convergence of the chains to the target
(e.g., reallocating “lost” chains around a mode of the target
[11]), and help the cooperative exploration of the state space
(for instance, generating a repulsion among the chains dur-
ing a certain number of iterations [14]). As a consequence,
the combined use of interacting parallel chains and adaptive
proposal pdfs is considered of great interest in the literature
[7].

In this work, we propose a novel scheme, called paral-
lel adaptive independent Metropolis (PAIM), involving par-
allel MCMC chains which exchange information in order to
adapt online their proposal densities. Namely, the interac-
tion among the chains is carried out by a cooperative adapta-
tion of the proposal functions. Each MCMC chain employs a
proposal pdf, independent of the previous state of the chain,
which are formed by a mixture of two densities, each one de-
termined by two parameters: a mean vector and covariance
matrix. All the parameters are updated using empirical esti-
mators (as in [8, 5]) applied to the complete set or only to a
subset of the previously generated states. On the one hand,
the first component of each mixture aims to provide a global
adaptation, the complete set of states is used. On the other
hand, the second component of each mixture is adapted con-
sidering only a subset of the previously generated states in
order to learn local features of the target pdf. These sub-
sets of states are built using a simple clustering-type strategy.
This generates a cooperative adaptation, preventing that dif-
ferent proposals cover the same region, and allowing them to
cover different modes of the target function, for instance. Fur-
thermore, the novel algorithm is able to identify the proposal
functions better located, and to allocate more computational
effort to the corresponding chains. Indeed, PAIM adapts the
number of iterations of every chain, stopping those chains
which are using a badly located proposal. PAIM is also able
to turn back on certain chains when it is necessary.
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2. GENERAL SETUP

In many different applications [12, 3, 4], it is necessary
to draw samples from a complicated d-dimensional tar-
get probability density function (pdf), π̄(x) ∝ π(x), with
x ∈ D ⊆ Rd. For this purpose, we consider the use of N
parallel Metropolis-Hastings chains [1], each one employ-
ing a different independent proposal pdf ψn(x), defined as a
mixture of two pdfs q1,n(x) and q2,n(x). More specifically,
explicitly indicating the parameters of the two components,
we have

ψn(x) =
1
2
q1,n(x|µ1,n,C1,n) +

1
2
q2,n(x|µ2,n,C2,n),

for n = 1, . . . , N , where µi,n represents a d-dimensional
mean vector and Ci,n is a d × d covariance matrix for i ∈
{1, 2}. In the novel method, the N parallel chains interact
in order to jointly adapt all the parameters, µi,n and Ci,n for
i ∈ {1, 2} and ∀n. The parameters µ1,n and C1,n, of the first
component q1,n of every proposal ψn are updated to provide
a global adaptation, whereas the parameters µ2,n and C2,n of
q2,n are adapted to extract local features of the target pdf.

Furthermore, in the novel scheme, each chain performs
a different number of iterations, Kn for n = 1, . . . , N . In-
deed, the proposed algorithm is also able to determine online
a subset of the N chains which are obtaining the best per-
formance. These chains are employed more often than the
rest. Namely, the total number of iterations Kn performed by
the corresponding chains is increased. Let us denote the to-
tal number of desired samples as L, chosen in advance by the
user. Then, we have K1 + K2 . . . + KN = L, i.e., PAIM is
stopped when L samples have been generated.1

3. ADAPTIVE PARALLEL INDEPENDENT
METROPOLIS ALGORITHM

The parallel adaptive independent Metropolis (PAIM) algo-
rithm works on two different time scales. First of all, the in-
dex t denotes the current step of the algorithm, with

t = 0, . . . , Ttot, (1)

where the total number of steps Ttot is not decided by the user,
but automatically tuned by PAIM (we have always Ttot ≤ L).
Furthermore, we have have a different iteration index kn for
each chain, such that

kn = 0, . . . ,Kn, (2)

for n = 1, . . . , N . The value of each Kn is also decided
by PAIM (recall that

∑N
n=1Kn = L). At each step, the set

At contains the indices corresponding to the active chains.
At every t-th step, all the active chains perform one iteration

1Note that we are including all the states in the “burn-in” periods of the
N chains. However, they can be discarded if desired.

(i.e., if the j-th chain is active, then kj = kj +1), whereas the
inactive chains remain frozen. For every t ≤ Ttrain, where
Ttrain is chosen by the user, all the chains are active, i.e.,

At = {1, 2, . . . , N}, t ≤ Ttrain.

Whereas for t > Ttrain we haveAt ⊆ {1, 2, . . . , N}. The in-
teracting adaptation is performed at any t such that Ttrain <
t < Tstop. We consider the possibility of stopping the adap-
tation after Tstop steps, since the adaptation could jeopardize
the ergodicity of the chains. However, the numerical results
described in Section 5 show that the algorithm seems to main-
tain the correct ergodicity properties.

The adaptation is performed as follows. During the first
Ttrain time steps the algorithm simply assigns the new cur-
rent states, generated at the t-th step, to one chain among the
N possible, according to the minimum Euclidean distance be-
tween them and the means, µ

(t)
2,n for n = 1, ..., N . Thus, we

allow the method to use a few iterations (t = 1, . . . , Ttrain) to
collect information about the target, as in [8, 5]. Afterwards,
the algorithm adapts all the parameters, µ

(t)
i,n and C(t)

i,n for
i ∈ {1, 2}, and the set of active chains At, until t = Tstop.
On the one hand, the parameters µ

(t)
2,n and C(t)

2,n are updated
using the empirical estimators for the means and covariances
considering only the samples assigned to the n-th chain. On
the other hand, the parameters µ

(t)
1,n and C(t)

1,n are adapted
considered all the states generated so far. The chains are
turned on or off taking into account the number of samples
assigned to the n-th chain. PAIM is detailed below.

1. Initialization:

1.1- Parameters: choose the number of chains N and the
desired samples L. Select the positive values ε, Ttrain,
Tstop,2 the initial parameters, µ

(0)
i,n and C(0)

i,n for i ∈
{1, 2}, the initial states xn,0, and the counters mn = 1
for n = 1, . . . , N . Define the initial set of the active
chains as A0 = {1, 2, . . . , N}.

1.2- Indices: set ` = 0, t = −1, and kn = 0 for n =
1, . . . , N .

2. MH steps:

2.1- Set t = t+ 1, Z = ∅ and i = 0.

2.2- For all the active chains, i.e., for all the indices j ∈ At:

(a) Sample x′ from the j-th proposal pdf,

x′ ∼ ψ(t)
j (x) =

1
2

2∑
i=1

q
(t)
i,j (x|µ(t)

i,j ,C
(t)
i,j ).

2We recall that it is necessary to set Ttrain < Tstop.
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(b) Accept xj,kj+1 = x′ with probability

α = min

"
1,
π(x′)ψ

(t)
j (xj,kj )

π(xj,kj )ψ
(t)
j (x′)

#
. (3)

Otherwise, set xj,kj+1 = xj,kj .

(c) Set Z = Z ∪ {zi+1 = xj,kj+1}, and i = i+ 1.

(d) Set θ`+1 = xj,kj+1, kj = kj + 1 and ` = `+ 1.

(e) Stop condition: If ` > L then stop and return
{θ1, . . . ,θL}.

3. Assignment (if t < Tstop):

3.1- For all the vectors zr ∈ Z , i.e., for r = 1, . . . , |Z| :

(a) Find the closest mean to zi (w.r.t. the Euclidean
distance), i.e., find the index

n∗ = arg min
n
||µ(t)

2,n − zr||22. (4)

(b) Set sn∗,mn∗+1 = zi and mn∗ = mn∗ + 1.

4. Adaptation (if Ttrain < t < Tstop):

4.1- Set At+1 = ∅.

4.2- For n = 1, . . . , N , update the mean vectors,

µ
(t+1)
1,n = µ̂(t+1) =

1
`

∑̀
i=1

θi,

µ
(t+1)
2,n =

1
mn

mn∑
i=1

sn,i,

(5)

update the covariance matrices,

C(t+1)
1,n = Ĉ(t+1) =

1
`− 1

∑̀
i=1

(θi − µ̂(t+1))2 + εId

C(t+1)
2,n =

1
mn − 1

mn∑
i=1

(sn,i − µ
(t+1)
2,n )2 + εId,

(6)

where Id is d× d unit matrix. Moreover, if

an =

⌈
N

mn∑N
j=1mj

⌉
> 0, (7)

then set At+1 = At+1 ∪ {n} (where dae denotes the
smallest integer larger or equal than a, with a ∈ R).
Otherwise, if an = 0 the n-th chain is deactivated, i.e.,
not used at the next iteration.

5. Repeat from step 2.

4. FURTHER CONSIDERATIONS ABOUT PAIM

Observe that the set Z contains all the new states generated
in one specific step. This is refreshed at the beginning of ev-
ery step t. Since the number of active chains is variable, the
cardinality of Z is also changing with t. Moreover, we have
denoted with sn,i the i-th state assigned to the n-th chain.
The counter mn indicates the number of states associated to
the n-th chain. Note also that for all t > Ttrain we have

µ
(t)
1,n = µ̂(t), C(t)

1,n = Ĉ(t), for n = 1, . . . , N.

Namely, all the functions q1,n are updated using the empirical
estimators of the mean and covariance of the target obtained
from all the generated samples.

It is important to remark that PAIM is able to distribute
the computational efforts efficiently. Indeed, let us consider
the initial use of a huge number N of parallel chains, with
proposal pdfs localized randomly over the state space. All the
chains using a badly located proposal pdf would be quickly
deactivated, i.e., only the chains with proposal pdfs located
close to high probability regions would survive. However, the
algorithm is also able to start up again certain chains if, after
some steps, new states have been assigned to them. Finally
note that, in the description of the algorithm, the parameters
are updated using a block procedure, but efficient recursive
update formulas can be employed (e.g., see [5]), so that PAIM
can be efficiently applied in high dimensional problems.

5. NUMERICAL RESULTS

We consider a bi-dimensional “banana-shaped” target distri-
bution [8], which is a benchmark function commonly used in
the literature. Mathematically, it is given by

π̄(x1, x2) ∝ exp
(
− 1

2η2
1

(
4−Bx1 − x2

2

)2 − x2
1

2η2
2

− x2
2

2η2
3

)
,

where, we have set B = 10, η1 = 4, η2 = 5, and η3 =
5. The goal is to estimate the expected value E[X], where
X = [X1, X2] ∼ π̄(x1, x2). We compute the true value
E[X] ≈ [−0.4845, 0]> approximately by using an exhaus-
tive deterministic numerical method (with an extremely thin
grid), in order to obtain the mean square error (MSE) of PAIM
and the corresponding independent parallel MH chains with
the same initial parameters but no adaptation.

We consider N ∈ {5, 10, 50, 100} chains with Gaus-
sian proposals, qi,n(x|µ(0)

i,n, C(0)
i,n) for i ∈ {1, 2} and n =

1, . . . , N . The initial means and the initial states are chosen
randomly at each run. More specifically, we have xn,0 ∼
U([−15,−15] × [−15, 15]) and µ

(0)
i,n ∼ U([−15,−15] ×

[−15, 15]). The initial covariance matrices are C(0)
i,n =

[σ2 0; 0 σ2]> with σ = 10. We consider L = 5000 total
number of samples. For PAIM, we test Ttrain ∈ {1, 10, 20},
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Fig. 1. (a) Contour plot of the banana-shaped target π̄, and the initial means µ
(0)
2,n (circles) with N = 20. (b) We show the

generated samples (dots), the initial (circles) and final means (x-marks) of the second component q2,n of the proposal of the
final active chains. The final covariance ellipsoids are also depicted. The final mean of the first component of the proposals,
µ

(Tstop)
1,n = µ̂(Tstop), is shown with a square jointly with the corresponding covariance ellipsoid with dashed line.
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Fig. 2. The indices of the active chains (denoted with black
marks) at each step t of PAIM in one specific run, setting
N = 50, Ttrain = 2, L = 1000. In this run, the final number
of active chains is 16 and Ttot = 38.

setting ε = 0.4 and Tstop = ∞ (i.e., we never stop the
adaptation). The results are averaged over 500 independent
simulations for each combination of parameters. PAIM al-
ways provides a smaller mean square error (MSE) in the
estimation of E[X] (averaging the two components) with re-
spect to the corresponding independent parallel chains (IPCs).
Table 1 shows the percentage of reduction in MSE obtained
using PAIM with different values of N and Ttrain, which
ranges from 22 % up to 60 % approximately. Indeed, in this
example the minimum train period (Ttrain = 1) provides
the best results. Figure 1(a) shows the initial means of the
second components of the proposals in PAIM, i.e., µ

(0)
2,n, and

Table 1. Percentage of reduction in the MSE obtained using
PAIM, with respect to IPCs.

Ttrain N = 5 N = 10 N = 50 N = 100

1 51.34% 58.05% 63.78% 60.31%
10 46.95% 41.73% 44.23% 35.65%
20 29.81% 35.51% 33.29% 22.33%

the contour plot of the target π̄. Figure 1(b) depict the initial
(circles) and final (x-marks) configurations of the means of
the second components of the final active proposals, i.e., µ(0)

2,n

and µ
(Tstop)
2,n , obtained in one specific run (setting N = 20

and L = 5× 104). The final mean µ
(Tstop)
1,n = µ̂(Tstop) of the

first component common to all the proposals is depicted with
a square. The figures also show with solid line the covariance
ellipsoids, corresponding to the ≈ 90% of the probability
mass, of the second components of the proposals of the final
active chains. The covariance ellipsoid corresponding to the
first common component of the proposal pdfs is displayed
with a dashed line. Figure 2 shows the indices corresponding
to the active chains, as a function of t, in one specific run
(N = 50 and L = 103).

6. CONCLUSIONS

In this work, we have introduced a new interacting parallel
MCMC scheme, where a cooperative adaptation of the pro-
posal densities is performed. Furthermore, the computational
effort is efficiently distributed by the the novel method among
the set of parallel chains, according to their performance.
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