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ABSTRACT

In many important engineering applications the state dynamics of
a system are modelled by Stochastic Differential Equations (SDEs)
evolving in non-Euclidean spaces such as matrix Lie groups. Due
to the advances in computing power, the problem of state estimation
can be efficiently addressed by the particle filtering method. This
requires dealing with both the geometry and the stochastics of the
problem. However, the very few papers that properly deal with ei-
ther are in the mathematics literature and not accessible. The engi-
neering literature is also small but plagued with problems. With this
in mind, we give a direct accessible derivation of the particle filter
algorithm for state estimation in matrix Lie groups. We do not rely
on differential geometry or advanced stochastic calculus. Simulation
examples are provided.

Index Terms— Particle filter, sequential Monte Carlo methods,
stochastic differential equations, matrix Lie group integrators

1. INTRODUCTION

In numerous engineering applications, state estimation of dynam-
ical systems evolving in non-Euclidean spaces such as matrix Lie
groups is required. Examples include computer vision [1–4], array
signal processing [5], satellite attitude and pose estimation [6–8],
robotics [6,9,10], etc. Particle Filtering (PF) methods have become
a very popular class of algorithms to numerically solve these estima-
tion problems in a recursive fashion as observations become avail-
able. They are flexible, and can easily be applied to nonlinear and
non-Gaussian dynamic models.

What is a Matrix Lie Group? – A matrix Lie group G is simply
a closed subset (under matrix multiplication) of all n × n invertible
matrices. The set of n × n matrices A such that eA ∈ G forms a
vector space called the Lie algebra of G, and is denoted by g. There
is a also a geometric interpretation for g – By multiplying eA with
itself, we can interpolate the generated sequence eA, e2A, e3A, · · · ∈
G to obtain etA ∈ G, t ≥ 0. Since e0·A = I ∈ G and d

dt
etA
∣∣
t=0

=
A, we can thus think of g as a tangent space at the identity.

In addition to G being a closed set, it is also a manifold, i.e. a
curved space that locally looks like Rm for some m. Hence the fact
that g is a tangent space to G implies that we can think of g behaving
like Rm. A good exposé on the topic is given in [11, 12].
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The State Space Model – In practice, the complete information
on the dynamics of the state X(t) is not available, and so, a stochas-
tic model is considered [13]. We use the following general SDE (in
Itō form) to describe the dynamics of the state X(t) ∈ G:

dX(t) = X(t)V0(X(t))dt+

d∑
i=1

X(t)Vi(X(t))dWi(t) (1)

where Vi(X(t))’s are known matrix functions of the state X and
time t, and satisfy (18) in Theorem 4 below. dWi(t)’s are scalar i.i.d.
Gaussian increments, i.e. dWi ∼ N (0, dt). The SDE in (1) is very
common in geometric state estimation problems, see [1,6–8,14,15].

Prior Work – Until very recently, PFs have solely been address-
ing systems in Rm, see [16, 17]. However, such filters cannot be
considered for filtering problems in other manifolds such as matrix
Lie groups G because the update schemes tend to immediately leave
the manifold, e.g. see the example in [8]. Hence, these schemes are
unstable.

PFs for state estimation that take into account the geometry of
the state space are given in [1–3, 6, 13, 18–22]. [13] is the first pa-
per to explicitly address particle filtering on G. However, it does not
deal with the general SDE in (1) but rather a very special case. [3]
addresses explicitly in detail the particle filtering on the special Eu-
clidean group G = SE(3). Thus, the state dynamics are also a
special case of (1). Similarly, [18, 19] consider the special orthogo-
nal group G = SO(3). In [6], the state dynamics satisfy (1), and a
general PF is given (without derivation), which is also used in [1,2].
In [1], the emphasis is placed on the Affine group G = Aff(2), while
in [2, 6], it is again on SE(3). [6] also considers SO(3). However,
even though the PF algorithm in [6] seems to be in the form that re-
spects the geometry, i.e. the update schemes supposedly remain in
G, it definitely does not take into account the stochastic nature of the
problem (Itō’s lemma). In other words, the PF state updates do not
correspond to the system SDE (1).

[20, 21] propose PFs, where the state evolves on a Riemannian
manifold (which includes G). However, the given schemes are too
abstract, do not explicitly deal with G, and so, extensive knowledge
of differential geometry is required in order to specialise the proce-
dures to G. In [20], the example provided considers state updates
in Rm, which is not extendable to updates on G. In [21], the dis-
crete state updates follow a multivariate affine generalised Hyper-
bolic distribution. It is not clear whether states generated from this
distribution satisfy (1).

Lastly, existing literature for dealing with matrix Lie groups con-
siders deterministic state dynamics [23–26]. These works do not
apply in the stochastic setting, where the available literature for en-
gineers [27–29] only deals with systems in Rm. Dealing with ge-
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ometric SDEs, such as (1), requires knowledge in both stochastic
calculus and differential geometry. So far, the very little literature on
this [30–32] has been oriented to mathematicians and not accessible
to engineers.

Current Contribution – We give a direct accessible derivation
of the general PF algorithm for state estimation on a matrix Lie group
G, where the state dynamics are give by (1). Knowledge of only ba-
sic probability concepts is assumed, and we do not rely on differen-
tial geometry or stochastic processes theory. The paper is organised
as follows: In Section 2 we state the problem of state estimation.
Sections 3 and 4 describe the particle filter method for solving the
problem, and the method is stated in Section 5. Simulations and the
conclusion are given in Section 6 and 7 respectively.

2. PROBLEM STATEMENT – STATE ESTIMATION IN G

For the discrete observation times t = t1, t2, . . . , tk, define Xk =
X(tk), also, let the noisy l×q measurement Yk of the state Xk ∈ G
be given by Yk = C(Xk) + E, where C : G → Rl×q and El×q is
the noise whose entries are i.i.d. zero mean Gaussian.

Given the observations Y1:k = {Y1, . . . ,Yk}, the aim is to
find the minimum Mean Squared Error (MSE) estimates of the states
X1:k = {X1, . . . ,Xk}, where the MSE is defined by [5]

E
[
d(X,Xk)2

]
=

∫
G
d(X,Xk)2 p(Xk |Y1:k) dGXk (2)

where d : G×G → R is the distance between X and Xk (see Section
6), p(Xk |Y1:k) is the posterior probability density function, and
dGXk is the infinitesimal area on the curved space G at Xk, see [33].
Note that if G is replaced by Rm, then the infinitesimal area on Rm
at x = [x1, . . . , xm] ∈ Rm simplifies to dRmx = dx1 . . . dxm.

Remark 1. Here we do not explicitly calculate integrals containing
probability densities on G, rather approximate them using random
samples, i.e. letting S(1), . . . ,S(N) ∼ p(Z), where N � 1, we
have the following (Monte Carlo) sample average approximation

E [φ(Z)] =

∫
G
φ(Z)p(Z)dGZ ≈

1

N

N∑
i=1

φ(Z)|Z=S(i) (3)

3. STATE ESTIMATION VIA PARTICLE FILTERING

To obtain a state estimator X̂k ∈ G we need to minimise the MSE
(2) with respect to X ∈ G, which might be difficult in general if
the direct approach of calculating the integral is considered. Hence,
we approximate (2) by its sample average using (3), which requires
sampling from the posterior p(Xk |Y1:k), and then minimise the ap-
proximation with respect to X. However, direct sampling from the
posterior is difficult and/or inefficient in general because the relation-
ship between X and Y might be too complicated. Thus, a recursive
procedure is needed, which takes the samples (particles) from the
previous posterior p(Xk−1 |Y1:k−1) and transforms them into sam-
ples (particles) from the current posterior p(Xk |Y1:k). This leads
to particle filtering.

The Filtering Equations – Using samples drawn from
p(Xk−1 |Y1:k−1) to obtain samples from p(Xk |Y1:k) requires de-
riving a relationship between these two posteriors. – By the standard
formula for the conditional density, we have

p(Xk,Xk−1 |Y1:k−1) = p(Xk |Xk−1,Y1:k−1)p(Xk−1 |Y1:k−1)

The state SDE (1) implies that X is Markov, i.e. Xk depends only
on Xk−1. Hence, p(Xk |Xk−1,Y1:k−1) = p(Xk |Xk−1). By sub-
stituting this and integrating the result over Xk−1, we obtain the data
dependant Chapman-Kolmogorov (CK) equation

p(Xk |Y1:k−1) =

∫
G
p(Xk,Xk−1 |Y1:k−1) dGXk−1

=

∫
G
p(Xk |Xk−1)p(Xk−1 |Y1:k−1) dGXk−1 (4)

Since p(Xk |Y1:k) = p(Xk |Yk,Y1:k−1), by applying Bayes’ rule
to the RHS, and using p(Yk |Xk,Y1:k−1) = p(Yk |Xk) due to the
observation equation, we obtain the update equation

p(Xk |Y1:k) =
1

zk
p(Yk |Xk,Y1:k−1)p(Xk |Y1:k−1)

=
1

zk
p(Yk |Xk)p(Xk |Y1:k−1) (5)

where zk = p(Yk |Y1:k−1) is a normalisation factor that depends
only on the data. The observation noise El×q has Gaussian entries,
so p(Yk |Xk) is known, and thus, can be calculated.

Particle Filtering – Letting S
(1)
k−1, . . . ,S

(N)
k−1 ∈ G denote the

N samples (particles) drawn from p(Xk−1 |Y1:k−1), if S̃
(s)
k ∼

p(Xk |Xk−1 = S
(s)
k−1) for each s = 1, . . . , N , then eq. (4) implies

Theorem 1. S̃
(1)
k , . . . , S̃

(N)
k ∼ p(Xk |Y1:k−1) when N � 1.

Sampling from p(Xk |Xk−1) so as to ensure that the samples remain
in G will be discussed in Section 4. Defining the probabilities

pk,s =
p(Yk |Xk = S̃

(s)
k )∑N

i=1 p(Yk |Xk = S̃
(i)
k )

, s = 1, . . . , N (6)

and letting S
(1)
k , . . . ,S

(N)
k denote the N samples (particles) chosen

from S̃
(1)
k , . . . , S̃

(N)
k ∈ G with probability pk,s, eq. (5) implies

Theorem 2. S
(1)
k , . . . ,S

(N)
k ∼ p(Xk |Y1:k) when N � 1.

Remark 2. Choosing a sample from S̃
(1)
k , . . . , S̃

(N)
k with proba-

bility pk,s is done by constructing the cumulative distribution PN
(a stair-case function with steps at each s with height pk,s), choos-
ing a uniformly random point α between pk,1 and

∑N
s=1 pk,s, and

selecting S̃
(j)
k , where j = maxi{i : PN (i) ≤ α}.

Obtaining the State Estimator X̂k – We can now use Theorem
2 to obtain X̂k ∈ G since we have that

X̂k = arg min
X∈G

E
[
d(X,Xk)2

]
(3)
≈ arg min

X∈G

1

N

N∑
i=1

d(X,S
(s)
k )2, S

(s)
k ∼ p(Xk |Y1:k) (7)

4. SAMPLING FROM p(Xk |Xk−1) BY SOLVING (1)

Obtaining an expression for p(Xk |Xk−1) to achieve sampling is not
needed when a discrete solution of the SDE (1) can be derived on the
small time interval [tk−1, tk] – Since it is assumed that Xk−1 ∈ G,
the solution X(t) ∈ G of (1) must have the form

X(t) = Xk−1 eΩ(t), Ω(t) ∈ g, Ω(tk−1) = 0 (8)
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by the definition of g, (see Section 1), and so, Xk = X(t)|t=tk . To
obtain an expression for Ω(t), we need to derive the differential of
the solution, and equate it with the differential (SDE) in (1). So, by
the Taylor series of eΩ, note that

dX = Xk−1

{
d

dε
eΩ+εdΩ +

1

2

d2

dε2
eΩ+εdΩ + · · ·

}∣∣∣∣
ε=0

(9)

where εdΩ ∈ g is a very small perturbation of Ω ∈ g. Note that
Ω + εdΩ ∈ g since g is a vector space. Then, by standard calculus

d

dε
eΩ+εdΩ ≈ eΩ+εdΩdΩ (10)

By differentiating (10) we obtain dr

dεr
eΩ+εdΩ ≈ eΩ+εdΩ(dΩ)r for

r ≥ 1. Next, let Ω(t) obey the following general SDE

dΩ = Adt+

d∑
i=1

BidWi (11)

where A,Bi are some function of Ω and t. Since Ω ∈ g, (11) has
to be an equation in g. So, since g is a vector space, by definition we
must have A ∈ g and Bi ∈ g. We now need to find A and Bi’s.

We firstly evaluate (dΩ)2, which has matrices scaled by the
terms (dt)2, dtdWi and dWidWj for each i = 1, . . . , d and j =
1, . . . , d. Now, dWi ∼ N (0, dt) implies that the term dtdWi has
a mean of 0 and variance of order (dt)3. When i 6= j, dWi and
dWj are i.i.d., hence the term dWidWj has a mean 0 and variance
of order (dt)2. Lastly, when i = j, the term (dWi)

2 has a mean of
dt and variance of order (dt)2. Since dt is a very small quantity, we
can assume (dt)p ≈ 0 for any p ≥ 2. This implies that the terms
dtdWi, dWidWj have zero variance, i.e. can be treated as deter-
ministic quantities, which therefore must be equal to their mean. So,
we can conclude that

(dt)2 = 0, dtdWi = 0, dWidWj =

{
0 if i 6= j

dt otherwise
(12)

which are called Itō’s rules, and so

(dΩ)2
(11)
=

(
Adt+

d∑
i=1

BidWi

)2

(12)
=

d∑
i=1

B2
i dt (13)

Thus, by applying (12) to the product of (11) and (13) we obtain
that (dΩ)3 = 0, and so, for any r ≥ 3 we must have (dΩ)r =
(dΩ)3(dΩ)r−3 = 0. Consequently, the derivative dr

dεr
eΩ+εdΩ is

zero for all r ≥ 3, and hence, from (9) we obtain Itō’s lemma (14)

Theorem 3. (Itō’s lemma) For X = Xk−1 eΩ, where Ω satisfies
the SDE (11), we have

dX = Xk−1

{
d

dε
eΩ+εdΩ +

1

2

d2

dε2
eΩ+εdΩ

}∣∣∣∣
ε=0

(14)

Next, substituting into (14) the derivative dr

dεr
eΩ+εdΩ|ε=0 with

r = 1, 2, as well as the expressions for dΩ and (dΩ)2 from (11) and
(13) respectively, the differential reduces to

dX = Xk−1 eΩdΩ +
1

2
Xk−1 eΩ(dΩ)2

= X

{
A +

1

2

d∑
i=1

B2
i

}
dt+

d∑
i=1

XBidWi (15)

We can finally equate (15) with the state SDE (1), resulting in

V0 = A +
1

2

d∑
i=1

B2
i and Vi = Bi, i = 1, . . . , d

and so, noting that Vi(X(t))
(8)
= Vi

(
Xk−1 eΩ(t)

)
, we have

A(Ω(t)) = V0

(
Xk−1 eΩ(t)

)
− 1

2

d∑
i=1

Vi

(
Xk−1 eΩ(t)

)2
(16)

Bi(Ω(t)) = Vi

(
Xk−1 eΩ(t)

)
, i = 1, . . . , d (17)

which are in g. Hence, we immediately obtain two results

Theorem 4. If X ∈ G from (8) solves (1), then (16) and (17) imply

V0 −
1

2

d∑
i=1

V2
i ∈ g and Vi ∈ g, i = 1, . . . , d (18)

Theorem 5. If X(t) ∈ G from (8) solves (1), then Ω(t) ∈ g solves
(11), where A and Bi are given by (16) and (17) respectively.

Hence, the geometry of the problem in the curved space G is man-
aged by working in g (the tangent plane). Treating g as Euclidean
space, see Section 1, we then apply standard linear algebra to solve
the problem in g, i.e. we obtain Ω(tk) by solving/discretising (11)

dΩ ≈ Ω(tk)−Ω(tk−1)

(11)
= A(Ω(tk−1))∆ +

d∑
i=1

Bi(Ω(tk−1))∆Wi,k−1 (19)

where ∆ = tk − tk−1 and ∆Wi,k−1 ∼ N (0,∆). Recalling that
Ω(tk−1) = 0, from (16), (17) and (19), we obtain the algorithm

Ω(tk) =

{
V0(Xk−1)− 1

2

d∑
i=1

Vi(Xk−1)2
}

∆

+

d∑
i=1

Vi(Xk−1)∆Wi,k−1 (20)

Xk = Xk−1 eΩ(tk) (21)

which is the simplest Euler method on G, see Figure 1. For a detailed
derivation see our paper [34]. Special case examples of this Euler
method are found in [8, 35]. The algorithm in [1, 6] for numerically
solving (1) is also of Euler type, however, it does not have the correct
update. Namely, it is missing the “Itō correction term” 1

2

∑d
i=1 V2

i ,
see eq. (4) in [1], and eq. (13) in [6].

5. THE STATE ESTIMATION (PF) ALGORITHM

Let X(0) = X0, and assume we can sample from p(X0 |Y1:0) =
p(X0) at t0 = 0.
Initialisation: For s = 1, . . . , N , draw S

(s)
0 ∼ p(X0). Compute the

estimator X̂0 using (7). Let t = tk and k = 1. Then:

(a) For s = 1, . . . , N , using S
(s)
k−1 ∼ p(Xk−1 |Y1:k−1), draw

S̃
(s)
k ∼ p(Xk |Xk−1 = S

(s)
k−1):

(i) Using (20), let Ωs(tk) = Ω(tk)|
Xk−1=S

(s)
k−1

.
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Fig. 1: Illustration of the Euler method ((20) & (21)) – The smooth
function X(t) ∈ G can be thought of as a flow on G (a smooth man-
ifold, see Section 1). Given the current iterate Xk−1 = X(tk−1), an
approximation of X(t) ∈ G on the small time interval [tk−1, tk] is
Xk = X(tk). To obtain Xk we shift the SDE problem (1) from G
to its Lie algebra g (tangent at I). The SDE problem in g, given by
(11), is then solved on [tk−1, tk], i.e. we obtain an approximation of
Ω(t) ∈ g at tk. Using the exponential map e : g→ G we then shift
the solution Ω(tk) from g back to G, i.e. Xk = Xk−1 eΩ(tk).

(ii) Using (21), compute S̃
(s)
k = S

(s)
k−1 eΩs(tk).

(b) For s = 1, . . . , N , draw S
(s)
k ∼ p(Xk |Y1:k):

(i) Compute the probabilities pk,s in (6).

(ii) For each s draw a sample, denoted by S
(s)
k , from the

set {S̃(s)
k }

N
s=1 with probability pk,s (see Remark 2).

(c) Compute the estimator X̂k using (7).

(d) Let k = k + 1 and t = tk. Go to (a).

6. SIMULATION

Here we illustrate the above PF algorithm for G = SO(3), which
is a set of 3 × 3 invertible matrices X such that XTX = I and
det(X) = 1. The corresponding Lie algebra g = so(3) is the set of
3×3 skew symmetric matrices, i.e. A ∈ so(3) implies A+AT = 0.

Since the state X ∈ SO(3) satisfies the state dynamics SDE (1),
we need to firstly use Theorem 4 to obtain the restrictions on Vi’s
in (1) for i = 0, 1, . . . , d. Letting d = 3, according to the theorem,
Vi ∈ so(3) for i = 1, 2, 3, and so, Vi + VT

i = 0 for i = 1, 2, 3,
which implies the following structure holds

Vi = S(vi) =

 0 −v3,i v2,i
v3,i 0 −v1,i
−v2,i v1,i 0

 , vi =

v1,iv2,i
v3,i

 (22)

for i = 1, 2, 3. Regarding V0, according to the theorem, V0 −
1
2

∑3
i=1 V2

i ∈ so(3), and so,

V0 −
1

2

3∑
i=1

V2
i +

(
V0 −

1

2

3∑
i=1

V2
i

)T
= 0 (23)

For i = 1, 2, 3 we have (V2
i )
T = (VT

i )(VT
i ) = (−Vi)(−Vi) =

V2
i , which when substituted in (23) gives V0 + VT

0 =
∑3
i=1 V2

i .
Thus, V0 cannot be skew-symmetric, i.e. V0 6∈ so(3), unless Vi =
0 for all i = 1, 2, 3. So, to satisfy the restrictions on the Vi’s, here

we simply let V0 = −I and Vi = S(ei), i = 1, 2, 3, where ei is a
vector with 1 in the i-th entry and 0 in all other entries.

Next, defining y0 = [0, 0, 1]T , we let the measurement function
C(X) = XTy0 ∈ R3. In this case, the observation noise E3×1 ∼
N (03×1,Σ3×3), and so, in (6) we have

p(Yk|Xk = S̃
(s)
k ) ∝ e−

1
2

(
Yk−C

(
S̃
(s)
k

))T
Σ−1

(
Yk−C

(
S̃
(s)
k

))

We let Σ = 0.1 × I3×3. Note that C(X)TC(X) = 1 when X ∈
SO(3), and so, the observations lie on the unit sphere.

To obtain X̂k in step (c) of the PF algorithm, we let the distance
d : SO(3)× SO(3) → R in (7) be given by d(X1,X2) = ‖X1 −
X2‖F , where ‖ · ‖F is the Frobenius norm. In this case, from [36]
we have that X̂k in (7) is given by

X̂k =

{
VUT if det

(
R̄T
)
> 0

Vdiag([1, 1,−1])UT otherwise
(24)

where U,V are obtained form the singular decomposition of R̄T ,
i.e. R̄T = UDVT , and R̄ = 1

N

∑N
s=1 S

(s)
k . We let N = 200, and

k = 0, . . . , 200.

Fig. 2: Plotting C(Xk) = [xk, yk, zk]T vs. its PF estimate C(X̂k)
= [x̂k, ŷk, ẑk]T . Xk is obtained by the Euler method ((20) & (21)).
Since X̂k ∈ SO(3), we see that C(X̂k) remain on the sphere. The
initial set of particles are given by X0 eS(vs), s = 1, . . . , N , where
vs ∼ N (03×1, 5× 10−3I3×3).

Fig. 3: Plotting [xk, yk, zk]T vs. its PF estimates [x̂k, ŷk, ẑk]T .

7. CONCLUSION

We have demonstrated in an accessible way how the particle filters
developed for state estimation in Rm can be extended to matrix Lie
groups. A general numerical method has been derived, and an exam-
ple simulation has illustrated this method for the SO(3) Lie group.

3972



8. REFERENCES

[1] J. Kwon and F. C. Park, “Visual tracking via particle filtering
on the affine group,” Intl. J. Robot. Res., vol. 29, pp. 198–217,
2010.

[2] C. Choi and H. I. Christensen, “Robust 3D visual tracking us-
ing particle filtering on the special Euclidean group: A com-
bined approach of keypoint and edge features,” The Interna-
tional Journal of Robotics Research, vol. 31, pp. 498–519,
2012.

[3] A. Srivastava, “Bayesian filtering for tracking pose and loca-
tion of rigid targets,” Proc. SPIE, Signal Processing, Sensor
Fusion, and Target Recognition IX, vol. 4052, pp. 160–171,
2000.

[4] Y. M. Lui, “Advances in matrix manifolds for computer vi-
sion,” Image and Vision Computing, vol. 30, pp. 380–388,
2012.

[5] A. Srivastava, “A Bayesian approach to geometric subspace es-
timation,” IEEE Trans. Signal Process., vol. 48, 2000.

[6] J. Kwon, M. Choi, F. C. Park, and C. Chun, “Particle filtering
on the Euclidean group: framework and applications,” Robot-
ica, vol. 25, pp. 725–737, 2007.

[7] V. Solo, “Attitude estimation and Brownian motion on SO(3),”
Proc. IEEE CDC, pp. 4857–4862, 2010.

[8] M. J. Piggott and V. Solo, “Stochastic numerical analysis for
Brownian motion on SO(3),” Proc. IEEE CDC, pp. 3420–
3425, 2014.

[9] W. Park, Y. Liu, Y. Zhou, M. Moses, and G. S. Chirikjian,
“Kinematic state estimation and motion planning for stochastic
nonholonomic systems using the exponential map,” Robotica,
vol. 26, pp. 419–434, 2008.

[10] G. S. Chirikjian and A. B. Kyatkin, Engineering Applications
of Noncommutative Harmonic Analysis. CRC, Boca Raton,
2000.

[11] G. S. Chirikjian, Sstochastic Models, Information Theory, and
Lie Groups, Vol. 2. Birkhäuser, Basel, 2012.

[12] B. Hall, Lie groups, Lie algebras, and representations - An el-
ementary introduction. Springer, New York, 2003.

[13] A. Chiuso and S. Soatto, “Monte Carlo Filtering on Lie
groups,” IEEE CDC, pp. 304–309, 2000.

[14] R. W. Brockett, “Lie algebras and Lie groups in control theory,”
in Geometric Methods in System Theory. Riedel, 1973, pp.
43–82.

[15] M. Liao and L. Wang, “Motion of a rigid body under random
perturbation,” Electron. Commun. Prob., vol. 10, pp. 235–243,
2005.

[16] D. Crisan and A. Doucet, “A Survey of Convergence Results
on Particle Filtering Methods for Practitioners,” IEEE Trans.
Signal Process., vol. 50, pp. 736–746, 2002.

[17] A. Doucet and A. M. Johansen, “A tutorial on particle filtering
and smoothing: fifteen years later,” 2011, http://www.cs.ubc.
ca/~arnaud/doucet_johansen_tutorialPF.pdf.

[18] A. Srivastava and E. Klassen, “Monte Carlo extrinsic estima-
tors of manifold-valued targets,” IEEE Trans. Signal Process.,
vol. 50, pp. 299–308, 2002.

[19] A. Srivastava, U. Grenander, G. R. Jensen, and M. I. Miller,
“Jump-diffusion Marcov processes on orthogonal groups for
object pose estimation,” J. Stat. Plan. Infer., vol. 103, pp. 15–
37, 2002.

[20] H. Snoussi and C. Richard, “Monte Carlo Tracking on the
Riemannian Manifold of Multivariate Normal Distributions,”
IEEE DSP/SPE, pp. 280–285, 2009.

[21] H. Snoussi and A. Mohammad-Djafari, “Particle Filtering on
Riemannian Manifolds,” AIP Conf. Proc., vol. 872, 2006.

[22] Q. Rentmeesters, P.-A. Absil, P. Van Dooren, K. Gallivan, and
A. Srivastava, “An efficient particle filtering technique on the
Grassmann manifold,” IEEE ICASSP, pp. 3838–3841, 2010.

[23] H. Munthe-Kaas, “Runge-Kutta methods on Lie groups,” BIT
Numer. Math., vol. 38, pp. 92–111, 1998.

[24] ——, “Higher order Runge-Kutta methods on manifolds,”
Appl. Numer. Math., vol. 29, pp. 115–127, 1999.

[25] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna, Lie
group methods. Acta Numerica, 2005.

[26] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical In-
tegration - Structure Preserving Algorithms for Ordinary Dif-
ferential Equations. Springer-Verlag, Berlin, 2002.

[27] P. E. Kloeden and E. Platen, Numerical solution of stochastic
differential equations. Springer-Verlag, Berlin, 1992.

[28] S. J. A. Malham and A. Wiese, “An introduction to SDE simu-
lation,” 2010, http://arxiv.org/abs/1004.0646.

[29] D. J. Higham, “An algorithmic introduction to numerical sim-
ulation of stochastic differential equations,” SIAM Review,
vol. 43, pp. 525–546, 2001.

[30] K. Burrage and P. M. Burrage, “High Strong Order Methods
for Non-commutative Stochastic Ordinary Differential Equa-
tion Systems and the Magnus Formula,” Phys. D, vol. 133, pp.
34–48, 1999.

[31] P. M. Burrage, “Runge-Kutta methods for stochastic differen-
tial equations,” 1999, PhD Thesis, http://espace.library.uq.edu.
au/view/UQ:157833.

[32] S. J. A. Malham and A. Wiese, “Stochastic Lie Group Integra-
tors,” SIAM J. Sci. Comput., vol. 30, pp. 597–617, 2008.

[33] X. Pennec, “Probabilities and statistics on Riemannian mani-
folds: Basic tools for geometric measurements,” NSIP, 1999.

[34] G. Marjanovic, M. J. Piggott, and V. Solo, “A simple approach
to numerical methods for stochastic differential equations in
Lie groups,” accepted in IEEE CDC, 2015.

[35] M. J. Piggott and V. Solo, “Tikhonov-Galerkin stochastic sys-
tem identification in SO(3),” IEEE ICASSP, 2015.

[36] M. Moakher, “Means and averaging in the group of rotations,”
SIAM J. Matrix Analysis Appl., vol. 24, pp. 1–16, 2002.

3973


