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ABSTRACT

Banding the inverse of covariance matrix has become a pop-
ular technique to estimate a high dimensional covariance ma-
trix from limited number of samples. However, little work
has been done in providing a criterion to determine when a
matrix is bandable. In this paper, we present a detector to
test the bandedness of a Cholesky factor matrix. The test
statistic is formed based on the Rao test, which does not re-
quire the maximum likelihood estimates under the alternative
hypothesis. In many fields, such as radar signal processing,
the covariance matrix and its unknown parameters are often
complex-valued. We focus on dealing with complex-valued
cases by utilizing the complex parameter Rao test, instead of
the traditional real Rao test. This leads to a more intuitive and
efficient test statistic. Examples and computer simulations are
given to investigate the derived detector performance.

Index Terms— Covariance Matrix, Banded, Rao Test

1. INTRODUCTION

In statistical signal processing, such as used in a radar signal
processing system, the sample covariance matrix plays an es-
sential role. [1]. It is often estimated from N adjacent sample
data vectors [x0 x1 · · · ,xN−1], where xn’s are assumed to
be L×1 identical and independent distributed (IID) complex-
valued data vectors, with the general maximum likelihood co-
variance matrix estimate Ĉ = 1

N

∑N−1
n=0 xnx

H
n [3], where H

denotes hermitian. A good covariance matrix estimate usually
requires N to be large. For example, it requires N ≥ 2L in
space-time adaptive processing (STAP) to have a good clutter
covariance matrix estimate [2] . In practice, however, this is
not valid due to the nonstationary environment. For example,
the data for a STAP system is often nonstationary due to the
heterogeneous clutter [1]. The number of data sufficiently IID
(homogeneous) can be relatively small N ≤ L [2].

A popular solution to the problem is adopting band-
ing/tapering techniques. Wu et al. proposed to estimate the
covariance matrix by banding the cholesky factor matrix and
applying kernel smoothing estimation [4]. Bickel demon-
strated that within the bandable class of covariance matri-

ces, the estimator Ĉ−1 obtained by banding the cholesky
factor matrix of the covariance matrix’s inverse is consis-
tent [5]. However, little work is available to provide a
guideline/criterion on deciding if a covariance matrix or
the cholesky factor matrix of its inverse is bandable. Such
a criterion is important and useful to decide if the banding
technique is a suitable strategy. Other covariance estimation
methods, such as modeling the covariance matrix as a time-
varying autoregressive moving average (ARMA) model [8]
also requires testing to decide if the model is a good fit. Some
recent hypothesis tests for bandedness can be found in [6].

In this paper, a new test based on the Rao test is pre-
sented to test the bandedness of a Cholesky factor matrix.
The Rao test has an asymptotic optimality property for large
data records, yet it requires noticeably lower computation cost
than some other detectors, ie., generalized likelihood ratio
test (GLRT), as it only needs the maximum likelihood esti-
mates (MLE) under the null hypotheses [9]. This property
in computational cost of the Rao test can be an advantage in
high-dimensional multivariate signal processing. We consider
a complex-valued covariance matrix and unknown parame-
ters in this paper. We adopt the complex parameter Rao test,
which offers a more intuitive detector than the traditional real
Rao test for testing complex-valued parameters [7]. It should
be pointed out, however, that the concept of utilizing the Rao
test for testing the bandedness of a matrix can also be easily
applied to the real-valued covariance matrix case via the real
Rao test.

The paper is organized as follows: Section 2 formulates
the problem; Section 3 derives the Rao test detector for test-
ing the bandedness of the cholesky factor matrix; Examples
and computer simulations for evaluating the detector’s perfor-
mance are given in Section 4; Finally, conclusions are drawn
in Section 5.

2. PROBLEM FORMULATION

Assume that we have N IID observed data vectors, X =
[xT

0 xT
1 · · · xT

N−1]
T , where T denotes transpose and each
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xn is an L × 1 complex-valued data vector, which obeys a
zero-mean multivariate complex Gaussian distribution xn ∼
CN (0,C) for n = 0, 1, · · · , N−1, and the xn’s are mutually
independent. We assume the N ≤ L limitation. The L × L
covariance matrices C is a Hermitian matrix, so its inverse
can be decomposed via the Cholesky decomposition as

C−1 = DHD,

where D is a lower triangular L × L matrix with a testing
model as follows.

D = DB +
M∑
k=1

bkΦk

DB is a known banded lower triangular matrix, with the band-
width to be m, the bk’s are unknown complex-valued param-
eters, and the Φk’s are known basis matrices. Specifically,

b1 = [D]m+2,1, Φ1 = em+2e
T
1

b2 = [D]m+3,2, Φ2 = em+3e
T
2

...
...

bL−m−1 = [D]L,L−m−1, ΦL−m−1 = eLe
T
L−m−1

bL−m = [D]m+3,1, ΦL−m = em+3e
T
1

bL−m+1 = [D]m+4,2, ΦL−m+1 = em+4e
T
2

...
...

bM = [D]L,1, ΦM = eLe
T
1

where M = (L−m−1)(L−m)
2 and each ek is an L × 1 vector

with kth element being one and the rest being all zeros. The
objective is to test if the lower triangular Cholesky factor ma-
trix D is equal to the banded lower triangular matrix DB . Let
b = [b1 b2 ... bM ]T . The detection problem is equivalent to
choosing between the following hypotheses:

H0 : b = 0;

H1 : b ̸= 0;

3. THE RAO TEST FOR TESTING THE
BANDEDNESS

In this section, we derive the complex parameter Rao test
for the aforementioned detection problem. The Rao test at-
tains the asymptotic (as N → ∞) performance as the GLRT
but avoids requiring MLEs under the alternative hypothesis
H1, so its computation cost is often substantially less than the
GLRT. This can be a desirable property in high-dimensional
signal processing, such as real-time STAP. The derivation of
the Rao test statistics follows. Let b∗ = [b∗1 b∗2 ... b∗M ]T ,
where ∗ denotes conjugate, and b = [bT bH ]T , which is an

2M × 1 complex-valued parameter vector. The complex pa-
rameter Rao test detector can be formed [7]

TR(X) =
∂ ln p(X;b)

∂b∗

∣∣∣∣H
b=0

I−1(b)
∣∣
b=0

∂ ln p(X;b)

∂b∗

∣∣∣∣
b=0

(1)
where,

∂ ln p(X;b)

∂b
=

[
∂ ln p(X;b)

∂b

T
∂ ln p(X;b)

∂b∗

T]T
,

∂ ln p(X;b)

∂b
=
[∂ ln p(X;b)

∂b1

∂ ln p(X;b)

∂b2
· · · ∂ ln p(X;b)

∂bM

]T
,

∂ ln p(X;b)

∂b∗ =

[
∂ ln p(X;b)

∂b∗1

∂ ln p(X;b)

∂b∗2
...

∂ ln p(X;b)

∂b∗M

]T
,

are based on Wirtinger derivatives. We next find each element
∂ ln p(X;b)

∂bk
as follows. Firstly,

ln p(X;b) = ln
N−1∏
n=0

p(xn;b)

= ln

[
1

πNL
∏N−1

n=0 det(C)
exp(−

N−1∑
n=0

xH
n C−1xn)

]

= ln(
1

πNL
)−

N−1∑
n=0

xH
n DHDxn +N ln det(DHD),

(2)
and

∂ ln p(X;b)

∂bk
= N

∂ ln det(DHD)

∂bk
−

N−1∑
n=0

∂xH
n DHDxn

∂bk

= N
∂ ln det(DHD)

∂bk
−

N−1∑
n=0

∂tr(Dxnx
H
n DH)

∂bk
,

(3)
for k = 1, 2, · · · ,M , where

∂ ln det(DHD)

∂bk
= tr(D−1Φk), (4)

and
∂tr(Dxnx

H
n DH)

∂bk
= tr(xnx

H
n DHΦk). (5)

Thus,

∂ ln p(X;b)

∂bk
= N tr(D−1Φk)−

N−1∑
n=0

tr(xnx
H
n DHΦk),

(6)
Under H0, where b = 0,

∂ ln p(X;b)

∂bk

∣∣∣∣
b=0

= N tr(D−1
B Φk)−

N−1∑
n=0

tr(Φkxnx
H
n DH

B )

(7)
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Also, we have

∂ ln p(X;b)

∂b∗k
= N tr(D−HΦH

k )−
N−1∑
n=0

tr(Dxnx
H
n ΦH

k ),

(8)
and its value under H0

∂ ln p(X;b)

∂b∗k

∣∣∣∣
b=0

= N tr(D−H
B ΦH

k )−
N−1∑
n=0

tr(DBxnx
H
n ΦH

k )

(9)
We next compute I(b) .

I(b) = E

(
∂ ln p(X;b)

∂b∗
∂ ln p(X;b)H

∂b∗

)
=

[
A B∗

B A∗

]
=

[
M ×M M ×M
M ×M M ×M

] (10)

where,

A = E
(

∂ ln p(X;b)
∂b∗

∂ ln p(X;b)H

∂b∗

)
B = E

(
∂ ln p(X;b)

∂b
∂ ln p(X;b)T

∂b

)
For each element [A]k,l and [B]k,l for 1 ≤ k, l ≤ M , we can
compute as follows,

Ak,l = −E

(
∂2 ln p(X;b)

∂b∗k∂bl

)
= E

(
N−1∑
n=0

tr(Φlxnx
H
n ΦH

k )

)
= N tr(ΦlD

−1D−HΦH
k )

(11)

Under H0, where b = 0, we have

Ak,l|b=0 = N tr(ΦlD
−1
B D−H

B ΦH
k ) (12)

In a similar fashion, we have

Bk,l = −E

(
∂2 ln p(X;b)

∂bk∂bl

)
= N tr(D−1ΦlD

−1Φk)

(13)

and its value under H0

Bk,l|b=0 = N tr(D−1
B ΦlD

−1
B Φk) (14)

Using equations (7), (9), (10), (12), (14) and the complex pa-
rameter Rao test equation (1) will produce the Rao test statis-
tic.

An explicit example is presented next to evaluate the per-
formance of the detector.

4. NUMERICAL EXAMPLES AND COMPUTER
SIMULATIONS

Consider a simple example, where we only have the N = 4
observed data set X = [xT

0 xT
1 xT

2 xT
3 ]

T , each xn’s is a 4× 1
complex-valued IID Gaussian vector, xn ∼ CN (0,C). Also,
C−1 = DHD, and D = DB + b1Φ1 with Φ1 = e4e

T
1 and

DB =


0.45 0 0 0

−0.25 + 0.25j 0.5 0 0
−0.12 + 0.12j −0.3 + 0.3j 0.55 0

0 −0.15− 0.15j 0.2− 0.2j 0.6


We are testing if the cholesky factor matrix D is banded and
equal to the known DB . It is equivalent to testing if b1 = 0
versus b1 ̸= 0. The Rao test for this example can be shown to
be (15).

To evaluate the Rao test performance for this example,
we consider three cases under the alternative hypothesis H1,
b1 = 0.8− j; b1 = 0.5+0.5j; b1 = −0.2+0.4j respectively.
The receiver operating characteristic (ROC)s, showing the re-
lationship of the probability of detection (Pd) versus the prob-
ability of false alarm (Pfa) of the derived Rao test is given in
Figure 1.
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Fig. 1. ROC curve of the Rao test detector with different b1

The Rao test statistic under the null hypothesis H0 is chi-
squared distributed with one degree of freedom, TR(X) ∼
χ2
2. The performance of the Rao test can be found asymp-

totically or as N → ∞. An estimated probability density
function (PDF), shown as a bar plot, and the theoretical PDF
(N → ∞) are shown in Figure 2.

5. CONCLUSIONS

The banding technique have become an important technique
in high-dimensional covariance matrix estimation with a lim-
ited number of samples. However, before adopting the tech-
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TR(X) =

Re

{(
4tr(D−1

B Φ1)−
∑3

n=0 tr(xnx
H
n DH

BΦ1)
)2

tr∗(D−1
B Φ1D

−H
B ΦH

1 )

}
2
[
|tr(Φ1D

−1
B D−H

B ΦH
1 )|2 − |tr(D−1

B Φ1D
−1
B Φ1)|2

]
−
Re

{(
4tr(D−1

B Φ1)−
∑3

n=0 tr(xnx
H
n DH

BΦ1)
)2

tr(D−1
B Φ1D

−1
B Φ1)

}
2
[
|tr(Φ1D

−1
B D−H

B ΦH
1 )|2 − |tr(D−1

B Φ1D
−1
B Φ1)|2

] (15)
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Fig. 2. Estimated and theoretical PDF of the test statistic for
the case N = 4

nique, it is important to test if the matrix is ”bandable”. We
have introduced the Rao test of bandedness of Cholesky fac-
tor matrix of inverse of the covariance matrix in this paper.The
Rao test’s computational cost is relatively lower than other de-
tectors such as GLRT, yet with reasonably good performance.
A concise form of the Rao test for testing bandedness of a
complex-valued covariance matrix with complex-valued un-
known parameters is present. An example and a simulation
are also given to evaluate the proposed detector. The method
can be easily applied to the real-valued covariance matrix and
parameters case. Moreover, the detector can be applied to
test if any element is zero in a matrix, by changing the ba-
sis matrix Φk accordingly. The derived detector can be used
as a pre-processing stage before adopting banding, or certain
modeling method, such as ARMA modeling techniques in co-
variance matrix estimation.
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