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ABSTRACT
Linear signal estimation based on sample covariance matrices
(SCMs) can perform poorly if the training data are limited
and the SCMs are ill-conditioned. Diagonal loading (DL)
may be used to improve robustness in the face of limited
training data. This paper introduces two leave-one-out cross-
validation schemes for choosing the DL factor. One scheme
repeatedly splits the training data with respect to time, while
the other repeatedly splits the out-of-training data with respect
to space. We derive computationally efficient implementa-
tions and compare them with the oracle choice in terms of the
mean squared error.

Index Terms— Cross validation, diagonal loading, sam-
ple covariance matrix

1. INTRODUCTION

Consider M -input N -output systems with zero-mean obser-
vation y ∈ CN×1 and zero-mean input x ∈ CM×1. A typical
example is the multi-antenna wireless communication system
[1]. The widely applied linear minimum mean squared er-
ror (LMMSE) signal estimator [2] can be constructed using
estimated covariance matrices as

x̂ = Ĉ†
yxĈ

−1
yyy, (1)

where Cab , E[ab†] denotes the cross-covariance matrix
between a and b, E[·] expectation, (·)† conjugate transpose,
and â an estimate of a. This estimator minimizes the mean
squared error (MSE)

MSEx , Ex[||x− x̂||]2, (2)

where || · || denotes the Frobenius norm, and Ex[·] is the ex-
pectation with respect to x.

The LMMSE estimator in (1) can perform poorly [3]-[5]
if (Ĉyy, Ĉyx) are estimated from limited training data using
the sample covariance matrices (SCMs):

Ĉyy =
1

T
YY†, Ĉyx =

1

T
YX†, (3)

where X ∈ CM×T and Y ∈ CN×T consist of the length-T
training data. Diagonal loading (DL) is a widely used ap-
proach to improve robustness, which leads to the regularized
estimate

x̂ = Ĉ†
yx

(
Ĉyy + γIN

)−1

y. (4)

The diagonal loading factor (DLF) γ can significantly affect
the achievable MSEx and must be carefully chosen. Ad hoc
choices, e.g., [3, p. 748], can result in very conservative per-
formance. More systematic methods have been proposed re-
cently. In particular, [6] circumvents this problem by solving
a covariance matrix estimation problem. Both [5] and [7] aim
to maximize the output signal-to-interference-plus-noise ratio
of the minimum variance distortionless response beamformer.
The choice of the DLF that minimizes the MSEx are studied
in [8] and [9]. Both schemes assume large systems and apply
random matrix theory. Furthermore, they assume indepen-
dent, identically distributed (i.i.d.) observations.

This paper introduces an alternative, automatic choice of
the DLF γ for (4) in training-based applications. In contrast
to [5, 6, 7], we aim to minimize directly the MSE of signal
estimation. Furthermore, instead of evoking the large system
assumption and random matrix theory as in [5, 8, 9], cross
validation (CV) is applied to choose the DLF. For applications
where the training and out-of-training data are identically dis-
tributed, we derive a CV scheme for determining the DLF
that reuses the training data, which were originally deployed
for producing (Ĉyy, Ĉyx). We repeatedly split the training
data into two sets, one for estimating (Ĉyy, Ĉyx) and one
for choosing γ. For applications where the training and out-
of-training data are not identically distributed, an alternative
CV scheme will be derived, which exploits the out-of-training
symbols. This scheme makes use of the spatial correlation
among the out-of-training outputs and chooses the DLF that
optimizes the prediction of the output symbols. Computa-
tionally efficient schemes are obtained for both cases, which
addresses the complexity concern of the standard CV scheme.
It is shown by simulation examples that the DLF chosen can
approach the oracle choice that minimizes MSEx.
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2. CV USING TRAINING DATA

We wish to choose the DLF γ for (4) that minimizes the MSE
of signal estimation defined in (2). Given Ĉyy and Ĉyx, the
MSE of estimating x using (4) can be written as

MSEx = tr
(
Cxx −C†

yxC
−1
yyCyx +E†

γCyyEγ

)
, (5)

where

Eγ ,
(
Ĉyy + γIN

)−1

Ĉyx −C−1
yyCyx. (6)

If the actual covariance matrices Cyy and Cyx are known,
the optimal γ that minimizes MSEx can be found, which will
be referred to as the oracle choice. This can be achieved by
solving the unconstrained, univariate optimization problem

γ∗
oracle = argmin

γ
tr
(
E†

γCyyEγ

)
(7)

using standard optimization methods. The oracle choice,
which is not realizable in practice, will be used as a bench-
mark for practical choices.

We apply the leave-one-out CV (LOOCV) principles
[10, 11] to derive practical schemes whose performance ap-
proaches the oracle choice. We first consider i.i.d. training
and out-of-training data, where the DLF can be determined
using only the training data. The training data (X,Y) are re-
peatedly split into two sets. As illustrated in Fig. 1(a), for the
i-th split, T−1 pairs of training symbols in (X∼i,Y∼i) (with
(xi,yi) omitted from (X,Y)) are used for generating SCMs
and the remaining one pair (xi,yi) is spared for estimating
the MSE of signal estimation for a different DLF. In total, T
different splits are obtained and the DLF that optimizes the
estimated performance will be chosen. The LOOCV method
minimizes the average squared error of estimating xi from yi

using an estimator W∼i derived from (X∼i,Y∼i):

γ∗ = argmin
γ

1

T

T∑
i=1

||xi −W†
∼i,γyi||2, (8)

where the estimator constructed from (X∼i,Y∼i) is given by

W∼i,γ =
(
Y∼iY

†
∼i + γIN

)−1

Y∼iX
†
∼i. (9)

Then applying the Woodbury matrix identity, we can show
that the error of predicting xi using W†

∼iyi can be written as

xi −W†
∼i,γyi = xi −

[
XY† (YY† + γIN

)−1
yi

1− yi (YY† + γIN )
−1

yi

−xi

yi

(
YY† + γIN

)−1
yi

1− yi (YY† + γIN )
−1

yi

]
.(10)

By plugging this into (8) and after some manipulations, the
optimal DLF is given by

γ∗ = argmin
γ

∣∣∣∣X−X
(
Bγ −DBγ

)
(I−DBγ )

−1
∣∣∣∣2 (11)

Fig. 1. Split of (a) training data and (b) out-of-training data for
the LOOCV schemes in Section 2 and 3, respectively, where yi and
y(n) , [y

(n)
1 , y

(n)
2 , · · · , y(n)

D ] denote the symbols spared for DLF
validation in the i-th and n-th split, respectively.

where
Bγ , Y† (YY† + γIN

)−1
Y. (12)

Computing the SVD of Y can facilitate the calculation of Bγ

and the cost function in (11) for different candidates of γ.

3. CV USING OUT-OF-TRAINING DATA

The LOOCV scheme in Section 2 chooses the DLF using only
the training data. It cannot be applied if the covariance matri-
ces are not estimated as SCMs. Furthermore, the DLF choice
given by (11) can perform poorly when the training sym-
bols are distributed differently than the out-of-training sym-
bols. This is the case, for example, when orthogonal signaling
or higher power is applied to the training symbols to obtain
high-quality estimates of the covariance matrices. This may
be encountered in applications like wireless communications
where the training symbols can be optimized [1].

This section introduces an alternative LOOCV scheme
to address the above limitations of training-based LOOCV
schemes. A block of out-of-training symbols, denoted by
yd, d = 1, 2, · · · , D, are exploited. Note that the input sym-
bols xd that lead to yd are unknown and need to be estimated.
We assume that the estimated covariance matrices Ĉyx and
Ĉyy are given. Similarly to Section 2 where the T training
symbols are split with respect to time, each out-of-training
symbol yd here is also split repeatedly, as illustrated in Fig.
1(b). Let y(n)d be the n-th entry of yd and y

(∼n)
d the vector

obtained by excluding y
(n)
d from yd. We now choose γ to

minimize the average squared error of predicting y
(n)
d from

y
(∼n)
d using the estimated covariance matrices (Ĉyx, Ĉyy),

i.e.,

γ∗ = argmin
γ

1

ND

D∑
d=1

N∑
n=1

∣∣∣∣∣∣y(n)d − ŷ
(n)
d,γ

∣∣∣∣∣∣2 . (13)
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The intuition is that the out-of-training observations can be
spatially correlated and this correlation can be exploited to
provide an LMMSE prediction of y(n)d from y

(∼n)
d . If a DLF

γ improves such a prediction, Ĉyy + γIN may outperform
Ĉyy in estimating Cyy, which may improve the estimation
of x.

Define ĉn as the estimated cross-covariance of y(∼n)
d and

y
(n)
d , obtained as the n-th column of Ĉyy with the n-th entry

excluded, and Ĉ∼n the estimated auto-covariance matrix of
y
(∼n)
d , constructed by excluding the n-th row and n-th col-

umn of Ĉyy. The LMMSE predictor of y(n)d from y
(∼n)
d with

DLF γ is then given by

ŷ
(n)
d,γ = ĉ†n

(
Ĉ∼n + γIN−1

)−1

y
(∼n)
d

= w†
n,γy

(∼n)
d , (14)

where
wn,γ =

(
Ĉ∼n + γIN−1

)−1

ĉn. (15)

The direct implementation of the LOOCV method in (13) in-
volves the inversion of an (N − 1)× (N − 1) matrix for each
n and γ. This can be avoided. To see this, take n = N as an
example. From the Woodbury matrix identity,

Φγ ,
(
Ĉyy + γIN

)−1

,
[

Ĉ∼N + γIN−1 ĉN
ĉ†N ĉN + γ

]−1

=

 × − (Ĉ∼N+γIN−1)
−1ĉN

ĉN+γ−ĉ†
N (Ĉ∼N+γIN−1)−1ĉN

× 1

ĉN+γ−ĉ†
N (Ĉ∼N+γIN−1)−1ĉN

 , (16)

where ĉN denotes the n-th diagonal entry of Ĉyy and × rep-
resents entries which are not of interests here. Comparing this
with (15) we can find

wN,γ =
−1

[Φγ ]N,N

[Φγ ]1:N−1,N , (17)

where [Φγ ]N,N denotes the (N,N)-th entry of [Φγ ] and
[Φγ ]1:N−1,N the vector consisting of the first N − 1 entries
of the N -th column of [Φγ ]. As such, we can write the
prediction error as

y
(N)
d − ŷ

(N)
d,γ = −

[
wN,γ

−1

]† [
y
(∼N)
d

y
(N)
d

]

=

(
[Φγ ]:,N
[Φγ ]N,N

)†

yd. (18)

We can find a similar relationship for y(n)d , n = 1, 2, · · · , N−
1, as

y
(n)
d − ŷ

(n)
d,γ =

(
[Φγ ]:,n
[Φγ ]n,n

)†

yd. (19)

−10 −5 0 5 10 15 20
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

SNR (dB)

N
or

m
al

iz
ed

 M
S

E
 o

f E
st

im
at

in
g 

x 
(d

B
)

 

 
Standard
DL, CV out−of−training
DL, CV training−only
DL, γ = 10λ

min

DL, oracle

Fig. 2. Normalized MSE versus SNR with orthogonal training
of length T = 24 constructed from the discrete Fourier transform
(DFT) matrix. D = 24 for the CV using out-of-training data.

Summarizing,

N∑
n=1

|y(n)d − ŷ
(n)
d,γ |

2 =

∣∣∣∣∣∣∣∣[ΦγD
−1
Φγ

]†
yd

∣∣∣∣∣∣∣∣2 , (20)

where DΦγ denotes the diagonal matrix that shares the diag-
onal entries of Φγ . We can now write the optimal DLF as

γ∗ = argmin
γ

1

ND

∣∣∣∣∣∣D−1
Φγ

ΦγY
∣∣∣∣∣∣2 , (21)

where
Y = [y1,y2, · · · ,yD]

collects the D out-of-training symbols used for choosing the
DLF. From (21) only one matrix inversion is needed for each
γ. The calculations of Φγ for different γ can be implemented
by reusing the eigenvalue decomposition (EVD) of Ĉyy.

4. EXAMPLES

We consider an example of MIMO systems modelled by

y = Hx+ z, (22)

where H ∈ CN×M is the channel matrix, and z ∈ CN×1 is
the white noise, which is uncorrelated with x. We assume that
M = N = 20, H has i.i.d., complex Gaussian entries with
unit variance, and z has i.i.d., complex Gaussian entries with
variance ρ. The signal to noise ratio (SNR) is SNR = 1/ρ.

We first consider a case where the training block X is
orthogonal, while the out-of-training data are i.i.d., complex
Gaussian. Fig. 2 shows the normalized MSE

E[||x̂− x||]2

E[||x||]2
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Fig. 3. Normalized MSE versus the length of orthogonal training T
for SNR = 10 dB. D = 24 for the CV scheme using out-of-training
data.

of estimating x using different choices of DLFs when the
length of training T = 24. Fig. 3 shows the comparisons
when SNR = 10 dB and T varies. We can see that compared
to the standard scheme based on SCMs (with γ = 0), the or-
acle choice of the DLF can provide significant performance
improvements, demonstrating the potential of diagonal load-
ing. Among the two CV schemes proposed, the one that uses
the out-of-training data significantly outperforms that using
only the training data, and it approaches the oracle choice in
most cases shown. This is because the training and out-of-
training data are not identically distributed. We also show the
performance of the DL scheme using the empirical choice [3]

γ = 10λmin,

where λmin is the smallest eigenvalue of Ĉyy. It is seen that
this empirical choice performs well when the SNR is low or
the length of training is small. However, when the SNR is
high or length of training is large, its performance degrades
significantly as γ = 10λmin becomes too large.

Fig. 4 shows the performance when the training and out-
of-training data are identically distributed. It is seen that both
CV schemes perform closely to the oracle choice. Note that
the CV scheme using only the training data performs slightly
better in this example and does not need to exploit the out-
of-training data. Comparing Figs. 3 and 4, we also see that
using orthogonal training may significantly improve the per-
formance of signal estimation.

5. CONCLUSIONS

We have introduced two CV approaches for choosing the
DLF for linear signal estimation based on SCMs. We derived
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Fig. 4. Normalized MSE versus the length of nonorthogonal train-
ing T . D = 24 for the CV scheme using out-of-training data.

closed-form expressions for the cost function of CV based
on training and out-of-training data, respectively. The latter
approach can be noticeably better when specially tailored
training data are used, while the former has the advantage
that it does not need to exploit any out-of-training data.
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