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Abstract—We present a novel framework for detection, track-
ing and recognition of deformable objects undergoing geometric
and radiometric transformations. Assuming the geometric defor-
mations an object undergoes, belong to some finite dimensional
family, it has been shown that the universal manifold embedding
(UME) provides a set of nonlinear operators that universally
maps each of the different manifolds, where each manifold is
generated by the set all of possible appearances of a single object,
into a distinct linear subspace. In this paper we generalize this
framework to the case where the observed object undergoes both
an affine geometric transformation, and a monotonic radiometric
transformation. Applying to each of the observations an operator
that makes it invariant to monotonic amplitude transformations,
but is geometry-covariant with the affine transformation, the set
of all possible observations on that object is mapped by the
UME into a distinct linear subspace - invariant with respect
to both the geometric and radiometric transformations. This
invariant representation of the object is the basis of a matched
manifold detection and tracking framework of objects that
undergo complex geometric and radiometric deformations: The
observed surface is tessellated into a set of tiles such that the
deformation of each one is well approximated by an affine
geometric transformation and a monotonic transformation of the
measured intensities. Since each tile is mapped by the radiometry
invariant UME to a distinct linear subspace, the detection and
tracking problems are solved by evaluating distances between
linear subspaces.

Index Terms—Matched manifold detection, Manifold Learning,
Dimensionality Reduction, Principal angles.

I. INTRODUCTION

Analyzing and understanding different appearances of an
object is an elementary problem in various fields. Since
acquisition conditions vary (e.g., pose, illumination), the set
of possible observations on a particular object is immense. We
consider a problem where, in general, we are given a set of
observations (for example, images) of different objects, each
undergoing different geometric and radiometric deformations.
As a result of the action of the deformations, the set of
different realizations of each object is generally a manifold
in the space of observations. Therefore, the detection and
recognition problems are strongly related to the problems of
manifold learning and dimensionality reduction of high dimen-
sional data that have attracted considerable interest in recent
years, see e.g., [6]. The common underlying idea unifying
existing manifold learning approaches is that although the data
is sampled and presented in a high-dimensional space, for
example because of the high resolution of the camera sensing

the scene, in fact the intrinsic complexity and dimensionality
of the observed physical phenomenon is very low.

The problem of characterizing the manifold created by
the multiplicity of appearances of a single object in some
general setting is studied intensively in the field of non
linear dimensionality reduction. As indicated in [7] linear
methods for dimensionality reduction such as PCA and MDS
generate faithful projections when the observations are mainly
confined to a single low dimensional linear subspace, while
they fail in case the inputs lie on a low dimensional non-
linear manifold. Hence, a common approach among existing
non-linear dimensionality reduction methods is to expand the
principles of the linear spectral methods to low-dimensional
structures that are more complex than a single linear subspace.
This is achieved, for example, by assuming the existence of
a smooth and invertible locally isometric mapping from the
original manifold to some other manifold which lies in a lower
dimensional space, [1]-[3].

An additional family of widely adopted methods aims at
piecewise approximating, the manifold or a set of manifolds,
as a union of linear subspaces, in what is known as the
subspace clustering problem, see [11], [12], and the references
therein. The need here is to simultaneously cluster the data into
multiple linear subspaces and to fit a low-dimensional linear
subspace to each set of observations. A different assumption,
namely that the data has a sufficiently sparse representation as
a linear combination of the elements of an a-priori known
basis or of an over-complete dictionary [9], [10] leads to
the framework of linear dictionary approximations of the
manifolds. Geometrically, this assumption implies that the
manifold can be well approximated by its tangent plane,
with the quality of this approximation depending on the local
curvature of the manifold.

Indeed, there are many cases where no prior knowledge on
the reasons for the variability in the appearances of an object
is available. On the other hand, there are many scenarios in
which such information is inherently available, and hence can
be efficiently exploited. In [16] we presented an alternative
to the direct methods for learning the manifold, that is both
natural to the problem as it exploits the available a-priori
knowledge of the type of expected deformations, and is
computationally very efficient. We concentrated on the case
where the geometric deformations are the major source for
the variability in the appearances of the object. Assuming the
geometric deformations an object undergoes, are invertible and
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belong to some known finite dimensional family, it has been
shown, that the universal manifold embedding (UME) provides
a set of nonlinear functionals that universally maps each of
the different manifolds, where each manifold is generated by
the set all of possible appearances of a single object, into a
distinct linear subspace of a high dimensional vector space. As
such, there is no loss of information in the reduced dimension
representation of the signals on the manifold.

The proposed universal manifold embedding is implemented
by constructing a set of non linear functionals. As such, the
mapping itself is nonlinear, and no local linear approximations
of the manifold are involved. The universal manifold embed-
ding provides an exact characterization of the manifold in con-
trast with existing dimensionality reduction methods in which
local approximations of the manifold structure are produced.
The evaluation of the universal manifold embedding for each
object requires the knowledge of the group of transformations
it undergoes and a single observation on the object. It provides
an exact description of the manifold despite using as low as a
single observation. Hence the need for using large amounts of
observations in order to learn the manifold or a corresponding
dictionary, is eliminated. This in turn, makes the method
especially attractive for tracking problems, where in general,
no prior observations of the object are available. Moreover,
the proposed universal manifold embedding does not involve
any discretization of the model, nor local approximations of
the manifold, as the parametrization of the manifold remains
in the continuum.

In this paper we expand the framework of matched manifold
detection based on the universal manifold embedding to the
more general case where the observed object undergoes not
only geometric transformations, but also radiometric trans-
formations. More precisely, we consider the case where the
observed object undergoes both an affine geometric transfor-
mation, and a monotonic radiometric transformation. However,
in the presence of radiometric transformations, the geometry-
induced low-dimensional manifold model, [16], for the set
of possible observations becomes over simplified. Thus, in
order to employ the geometry-induced manifold model, the
observations must be projected onto the manifold by finding a
transformation that makes the observation invariant to radio-
metric deformations while being covariant with the geometric
transformation. This leads to the derivation of a radiometry-
geometry invariant matched manifold detector and tracker.
This detector is then further employed as the basic building
block in tracking complex objects that undergo both geometric
and radiometric deformations, where the observed surface is
tessellated into a set of tiles such that locally, the deformation
of each of the tiles is well approximated by an affine geo-
metric transformation and a monotonic transformation of the
measured amplitudes on the tile.

II. RADIOMETRY INVARIANT UNIVERSAL MANIFOLD
EMBEDDING

Let us begin by informally stating the problem studied in
this paper. Suppose we are given two observations g and h,

on the same object such that

h(x) = U(g(A(x))), (1)

where U is invertible and A is affine. The right-hand compo-
sition of g with A represents the spatial affine deformation,
while the left-hand composition with U represents the radio-
metric transforation applied to the signal’s amplitude.

More specifically, let O be the space of observations (for
example, images), let Ã be the set of possible geometric defor-
mations, U the set of monotonic one-dimensional transforma-
tions, and let S be a set of objects. We assume that the obser-
vations are the result of the following procedure: We choose an
object s ∈ S and some geometric-radiometric transformation
pair (A, U) in Ã × U . An operator ψ : S × Ã × U → O
acts on an object s ∈ S such that it jointly undergoes an
affine geometric deformation A, and a monotonic radiometric
transformation U , producing an observation (such as g or h,
above). For a specific object s ∈ S we will denote by ψs the
restriction of the map to this object. For any object (function)
g ∈ S the set of all possible observations on this particular
function is denoted by Sg . We refer to this subset as the orbit
of g under the direct product Ã×U . In general, this subset is
a non linear manifold in the space of observations. The orbit
of each function forms a different manifold.

In this section we show, by construction, that under the
above assumptions there exists a pair of maps R : O → O
and T : O → H such that H is a linear space, which
we call the reduced space. This construction holds for every
object g ∈ S. We call the map T ◦ R, radiometry invariant
universal manifold embedding as it universally maps each of
the different manifolds, where each manifold corresponds to a
single object, into a distinct linear subspace of H such that the
overall map T ◦R◦ψs : Ã×U → H is linear. In other words,
each manifold is mapped into a different linear subspace of
H . The map R projects the entire set of possible observations
that may result from monotonic amplitude transformations, for
some fixed pose of the object, to unique point on the manifold
which represents the orbit of geometry only deformations
of the object. The map T then maps the result non-linearly
such that the overall map T ◦ R maps any observation to a
distinct linear subspace of H . Figure 1 schematically illustrates
the concept of the radiometry invariant universal manifold
embedding.

Fig. 1. Radiometry invariant universal manifold embedding.

Let Rn be the n-dimensional Euclidean space and let
A : Rn → Rn be an affine transformation of coordinates,
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that is, A : x 7→ Ax + c where A ∈ Rn×n is non-singular,
c ∈ Rn, and x,y ∈ Rn , i.e., x = [x1, x2, . . . , xn]

T , y =
[y1, y2, . . . , yn]

T , such that y = Ax+ c, x = A−1y+ b. A
shall represent the geometric deformation. Let U : R → R be
an invertible function, representing the non-linear radiometric
deformation.

Denote by Bc(Rn) the space of bounded, compactly sup-
ported, Lebesgue measurable functions from Rn to R and
let g ∈ Bc(Rn). Throughout, we shall use ◦ to denote
the composition of functions, and supp{f} shall be used to
denote the support of a function f , i.e., the closure of the
set where f does not vanish. With these notations, the first
problem addressed in this paper is the following: Given two
observations g and h related by (1), find a representation
for g (and h) which is invariant to both the radiometric
transformation U and the affine transformation A.

Let λ denote the Lebesgue measure on Rn. Following
[15] we define the sample distribution transformation V on
Bc(Rn):

[V g](t) =
λ{x ∈ supp{g} : g(x) ≤ t}

λ{supp{g}}
, g ∈ Bc(Rn).

(2)
The sample distribution may be thought of as a continuous

“cumulative histogram” of a function. Define next an auxiliary
operator R on Bc(Rn) by

Rh = [V h] ◦ h. (3)

Since [V h](t) may be viewed as the “cumulative histogram”
of h, roughly speaking, the operator R maps each value t in the
range of h, to its “accumulated relative frequency”, [V h](t).

Applying R to the basic relation h = U ◦ g ◦ A given in
(1), we have, [15]

Rh = [Rg] ◦ A. (4)

Hence, letting H(x) = [Rh](x) and G(x) = [Rg](x), for all
x ∈ Rn the following relation holds

H(x) = [G ◦ A](x) = G(A(x)). (5)

Thus, (5) represents an affine, geometric only, relation between
the induced transformations of h and g by the operator R.
In other words by applying the operator R, the dependence
of the relation between h and g in the unknown radiometric
deformation U , has been removed, while their corresponding
transformations, H(x) and G(x) are two “new” observations
related by an affine transformation A. We next derive new
representations for H(x) and G(x) that are invariant to the
unknown affine transformation.

Let ỹ = [1, y1, . . . , yn]
T . Thus, x = Dỹ where D is an

n×(n+1) matrix given by D =
[
b A−1

]
. Let L ∈ N and let

wl l = 1, . . . , L be a set of bounded, Lebesgue measurable
functions wl : R → R. Let Dk denote the kth row of the
matrix D. Then, [13],∫

Rn

xkwℓ ◦ H(x)dx =
∣∣A−1

∣∣ ∫
Rn

(Dkỹ)wℓ ◦ G(ỹ)dỹ (6)

Let f be some observation on a deformable object and let

T(f) =


∫
Rn

w1 ◦ f(y)
∫
Rn

y1w1 ◦ f(y) · · ·
∫
Rn

ynw1 ◦ f(y)

...
. . .

...∫
Rn

wL ◦ f(y)
∫
Rn

y1wL ◦ f(y) · · ·
∫
Rn

ynwL ◦ f(y)


(7)

Denote D̃ = [e1 DT ] where e1 = [1, 0, . . . , 0]T . Then, if
H is an observation of G undergoing an affine deformation
represented by the matrix D, then from (6) we get:

T(G)
∣∣A−1

∣∣ D̃ = T(H) (8)

Since the deformations at hand are invertible, this implies that
the column space of T(G) and the column space of T(H)
are the same subspace. Thus, after applying the mapping T to
the space of observations “normalized” by the operator R, the
problems of detection and recognition of objects undergoing
both an affine geometric transformation, and a monotonic
radiometric transformation become a problem of classifying
subspaces.

Measuring the distance between two subspaces of a larger
subspace is a well explored problem. More formally, this
problem is that of measuring the distance on the Grassmann
manifold of subspaces of dimension n + 1 in an ambient
space of dimension L. One way of measuring distance between
subspaces is by principal angles. An alternative is to use the
fact that projection matrices have one-to-one correspondence
to subspaces. That is, given two matrices A,B whose column
spaces are the same, we get that the projection matrix onto the
column space of A is identical to the projection matrix onto
the column space of B. This enables us to measure the distance
between subspaces by measuring the Frobenius norm of the
difference between the projection matrices onto the different
object subspaces. This metric provides the sum of the sinusoid
squared of the principle angles.

Let Pf denote the projection matrix onto the n+ 1 dimen-
sional column space of T(f) defined in (7). Using (4) and (8)
we have thus proven the following theorem.

Theorem 1. Let g and h be two observations on the same
object, such that they are related by both an affine geometric
transformation, and a monotonic radiometric transformation,
i.e., h(x) = U(g(A(x))). Then PH = PG .

Theorem 1 provides the basis for matched manifold de-
tection in the presence of both radiometry and geometry
transformations between observations. It is concluded that
as long as two observations on the same object differ by
an affine transformation of coordinates and some monotonic
transformation of the pixel amplitudes, the corresponding pro-
jection matrices PH and PG will be identical, while projection
matrices that result from observations on other objects will be
different and hence will yield non-zero distances form PG .

III. LOCAL MATCHED MANIFOLD DETECTION AND
TRACKING

In general, the observed surface is not a single plane
undergoing an affine transformation, and the radiometric
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variations across observations are not necessarily monotonic.
Nevertheless, almost any surface can be well approximated by
its tessellation into tiles, such that two observations on the
same tile are related by simultaneous affine transformation
of coordinates and a monotonic mapping of the intensities.
Therefore the following approach is adopted (in order to
simplify the explanation, we concentrate on the case where
the observations are 2-D images): Given two observations that
contain an object to be tracked, the first step in constructing
the radiometry-geometry invariant matched manifold detection
framework, is to apply some point matching algorithm in
order to find tentatively corresponding scene points in the two
images. Given the two sets of tentatively corresponding points,
the Delaunay triangulation is applied to tessellate each image
into a set of disjoint tiles. Each of these tiles is assumed to be
a planar surface, such that if a set of three points defining a
triangle in one image indeed matches a set of three points on
the other image, then the resulting triangular surfaces will be
related by simultaneous affine transformation of coordinates
and a monotonic mapping of the intensities. In general, the
proposed algorithm can work on top of any state-of-the-art
point matching algorithm. However, since any given tile pair
(source and target) in our tessellation is created by vertices that
constitute point matches, it is successfully matched only if this
entire set of matches is correct (e.g. in case of triangulation, all
3 matches have to be correct). The probability for a successful
tile match naturally increases with the precision of these
point matches. Thus, the proposed matched manifold tracker
achieves significantly faster results when employed on top of
more accurate point matching algorithm that includes lower
rates of false matches. In this work, we used the expansion
based matching approach introduced in [17], where matches
are extracted with a low rate of false matches, and thus provide
successful matches of many object tiles. Another advantage
of using the expansion approach from [17], is that it supplies
vaster coverage of the scene relative to other state-of-the-art
solutions. This allows for a more complete coverage of the
scene by matching tiles.

In practice, the locations of the correspondence points are
noisy and hence do not exactly match even in the case
where the triangles should indeed match. Hence, the above
evaluation of the distance between surfaces through measuring
the distance between their corresponding projection matrices,
is employed in order to refine the estimates of the locations of
the points defining the triangle sides. Using the metric for the
distance between subspaces, false matches between triangular
surfaces are efficiently rejected.

Figure 2 provides an example of the results obtained by
applying the radiometry-geometry invariant matched manifold
detector. The two images, although taken from different view
points and at different times, contain objects in common.
The green shaded areas in both images were identified as
identical objects in both images. Each of these areas is, in
fact, a union of triangular surfaces that were identified by the
matched manifold detector to be identical. The vertices of the
triangles are the initial point matches, employed to initialize

the procedure. Note that triangular tiles that result from false
initial point matches, yield projection matrices that cannot be
matched with projection matrices of tiles in the other image.
Hence, they are excluded from the set of matching tiles (and
hence are not green shaded).

Fig. 2. Two images, taken from different view points but contain objects
in common. The green shaded areas in both images were identified by the
matched manifold detector as identical objects in both images.

IV. CONCLUSIONS

We have presented a novel framework for implementing
geometry and radiometry invariant matched manifold detec-
tion and tracking. It is assumed that the observed surface
undergoes both an affine geometric transformation, and a
monotonic radiometric transformation, or that it can be tes-
selated into a union of such surfaces. By applying to each
of the observations on a surface tile, an operator that makes
it invariant to monotonic amplitude transformations, but is
geometry-covariant with the affine transformation, the set of
all possible observations on that tile is mapped by the universal
manifold embedding into a distinct linear subspace of some
high dimensional Euclidean space. Thus, by tessellating the
observed surface into a set of tiles it is shown that even
in the general case where the observed surface deformation
is highly complex, a sufficiently large number of triangular
tiles can be detected on the surface such that by evaluating
the Frobenius norm between the UME generated projection
matrices, efficient detection and tracking of an object, under
large deformations is achievable.
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