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ABSTRACT

The recent introduction of η-Hermitian matrices A = AηH has
opened a new avenue of research in quaternion signal processing.
However, the exploitation of this matrix structure has been limited,
perhaps due to the lack of joint diagonalisation methodologies of
these matrices. As such, we propose novel decompositions of η-
Hermitian matrices to address this shortcoming in the literature. As
an application, we consider a blind source separation problem in
the form of an Alamouti-based communication system. Simulation
studies demonstrate the effectiveness of our proposed joint diago-
nalisation technique and indicate that our approach is particularly
useful when the sources are correlated.

Index Terms— Joint diagonalisation, quaternion domain, uncor-
relating transform.

1. INTRODUCTION

Diagonalisation of covariance matrices is a pivotal procedure in a
number of the statistical signal processing algorithms, such as prin-
cipal component analysis (PCA) and blind source separation (BSS)
[1]. For example, joint diagonalisation of covariance matrices of
multivariate data has been an instrument to decorrelate the data chan-
nels in BSS.

Recent advances in complex statistics have highlighted the ne-
cessity of widely linear modelling of signals, to exploit the power
difference or correlation between the data channels. For this pur-
pose, ‘augmented’ statistics have been established to incorporate
the covariance and complementary covariance matrices, and to cater
for the second order noncircular (improper) processes in statistical
signal processing [2]. Important contributions to augmented statis-
tics are the general uncorrelating transform (GUT) [3] and strong-
uncorrelating transform (SUT) [4, 5] which diagonalise the covari-
ance and pseudo-covariance matrices simultaneously.

The SUT has been established for both single and multichannel
complex-valued processes. However, the advances in multidimen-
sional sensor technologies have underlined the need for signal pro-
cessing algorithms in the quaternion domain (H) due to its potential
for modelling of three- and four-dimensional data [6]. Similar to
the complex domain, the use of augmented statistics and associated
widely linear modelling is also required for quaternion signals to ac-
count for the full second order information. Recent developments
include the analysis of quaternion data via augmented quaternion
statistics; for example, the unitary diagonalisation of quaternion ma-
trices was introduced in [7] and [8] established quaternion fast in-
dependent component analysis (Q-FastICA) for the blind separation
of both proper and improper quaternion-valued processes. Although
research on quaternion signal processing has revived interest in sev-
eral applications, there are still some shortcomings in the quaternion
formulations, e.g. there is a lack of closed form solutions to perform
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the simultaneous diagonalisation of the quaternion covariance matri-
ces. To this end, we consider the simultaneous diagonalisation of a
pair of covariance matrices in quaternion domain, paving the way for
the quaternion uncorrelating transform1 (QUT) to allow for the co-
variance and a desired complementary covariance to be diagonalised
simultaneously.

2. SECOND-ORDER STATISTICS OF QUATERNION

Augmented statistics have been established to incorporate the com-
plementary covariance matrices and exploit the complete second-
order information. In complex domain, a basis vector is augmented
by its conjugate2 variables as za = [z, z∗]T ∈ C [9]. Thus, the aug-
mented covariance matrix, Ca = E{zazaH}, takes into account
the complete second-order information. However, such convenient
manipulation is not possible in quaternion domain - illustrated in the
next section.

2.1. Quaternion statistics

Quaternions are hypercomplex numbers denoted by H. A quaternion
vector3 x can be expressed in the Cartesian form as:

x = xr + ıxi + xj + κxk (1)

where R{x} = xr is the scalar (real) part, I{x} = x − xr is
the vector (pure quaternion) part, and ı,  and κ are orthogonal unit
vectors. An important notion for the quaternion domain is the so-
called “quaternion involution” which forms the basis for augmented
quaternion statistics. An involution operator defines a self-inverse
mapping about a unit quaternion η ∈ {ı, , κ}, given by [10, 11]

xη = −ηxη
e.g. xı = −ıxı = xr + ıxi − xj − κxk

(2)

Note that the involution designates a rotation along a single unit axis,
while the quaternion conjugate operator (·)∗ rotates along all three
imaginary axes, and can be computed as

x∗ = R{x} − I{x} = xr − ıxi − xj − κxk

=
1

2
(xı + x + xκ − x)

(3)

According to (2) and (3), the correspondence between the elements
of a quaternion variable in H and the elements of a quadrivariate
vector in R4 can be obtained as [9]:

R{x} = 1

2
(x + x∗), Iη{x} =

1

2η
(x− xη∗) η ∈ {ı, , κ}

(4)

Therefore, quaternion statistics should generally include all quater-
nion involutions xı, x, and xk to access to the complete second
order statistical information. In other words, second order quater-
nion statistics should contain ı-, -, and κ- covariance matrices as

1QUT is analogous to the SUT for complex matrices [4].
2The operators (·)T , (·)∗ and (·)H represent transpose, conjugate and Her-

mitian (conjugate transpose) respectively.
3Throughout this paper, we assume zero mean quaternion variables with unit

variances. This does not affect the generality of our results.
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well as the standard covariance matrix. These matrices are also
called the complementary covariance matrices which are obtained
as Cxη = E{xxηH}, η ∈ {ı, , κ}.
Remark#1: The standard covariance matrix Cx = E{xxH} is a
Hermitian matrix, while a complementary covariance matrix Cxη =
E{xxηH} is an η-Hermitian matrix.
Similar to the complex domain [5], diagonalisation of the above co-
variance matrices is fundamental in several statistical signal process-
ing algorithms, which is next discussed.

3. SIMULTANEOUS DIAGONALISATION

To consider the simultaneous diagonalisation of the quaternion cor-
relation matrices, we first consider the following propositions and
lemma:
Proposition 1: If A,B ∈ H are η-Hermitian and A is nonsingular,
A,B are simultaneously diagonalisable if and only if D = A−1B
is normal.
Proof. Consider a unitary matrix M such that Λa = MηHAM and
Λb = MηHBM are both diagonal. Thus, A−1 = MΛ−1

a MηH

and B = MηΛbM
H where A−1B = M(Λ−1

a Λb)M
H is unitarily

diagonalisable, i.e. normal. �

Proposition 2: If A =

[
B C
0 0

]
∈ H, then A is normal if and only

if B is normal and C = 0.
Proof. A is normal if AAH = AHA where:

AAH =

[
BB∗ + CC∗ 0

0 0

]
AHA =

[
B∗B B∗C
C∗B C∗C

]
therefore, AAH = AHA holds if C = 0, and BB∗ = B∗B, i.e.
B is normal. �

Lemma 1: An η-Hermitian matrix A can be factorised as A =
QΛQηH , where Q denotes a quaternion unitary matrix and Λ is
a real-valued nonnegative diagonal matrix. This lemma is fully de-
scribed in [7, 12].

3.1. Diagonalisation

The introduction of η-Hermitian matrices implies that there are
three kinds of simultaneous diagonalisation of quaternion matrices,
namely when both matrices are Hermitian or η-Hermitian and when
one matrix is Hermitian and the other is η-Hermitian; we therefore
consider such diagonalisations in the form of the following corollary.

Corollary 1. For given matrices A,B ∈ H:
(a) If A and B are both Hermitian, there exists a matrix M ∈ H

such that MHAM and MHBM are both diagonal if and only if
AB is Hermitian, i.e. AB = BA.
(b) If A and B are both η-Hermitian, there exists a unitary matrix
M ∈ H such that MηHAM and MηHBM are both diagonal if
and only if ABη is normal, i.e. ABηBηHAH = BηHAHABη .
(c) If A is Hermitian and B is η-Hermitian, there exists a matrix

M ∈ H such that MHAM and MηHBM are both diagonal if and
only if BA is η-Hermitian, i.e. BA = (BA)ηH = AηHBηH =
AηB.

3.1.1. Proof of Corollary 1

(a) If MHAM = Λa and MHBM = Λb are diagonal, we have
A = MΛaM

H and B = MΛbM
H . Thus:

AB = MΛaM
HMΛbM

H = MΛb(M
HM)ΛaM

H = BA

�

(b) If MηHAM = Λa and MηHBM = Λb are diagonal, then
A = MηΛaM

H and B = MηΛbM
H . Hence:

ABη = MηΛaM
HMΛbM

ηH = Mη(ΛaΛb)M
ηH

which is diagonisable with a unitary matrix and it is normal. For the
converse, consider the following scenarios:

(i) Suppose ABη is normal and A is nonsingular. Since ABη =
(A−1)−1Bη is normal, A−1 and Bη are simultaneously unitary
diagonalisable, see Proposition 1. Since A and B are η-Hermitian,
according to Lemma 1, we have A−1 = MΛ−1

a MηH and Bη =
MΛbM

ηH . Thus:
A = MηΛaM

H = MηΛa(M
η)ηH

B = MηΛbM
H = MηΛb(M

η)ηH

which are simultaneous diagonalisations of A and B.
(ii) Suppose ABη is normal and A is singular. Hence, there is a

unitary matrix M ∈ H where MηHAM is diagonal. The columns
of M can be permuted such that:

MηHAM =

[
Σ 0
0 0

]
MηHBM =

[
B11 B12

BηH
12 B22

]
where Σ is a diagonal block matrix with vanishing η-components,
and B11 and B22 have vanishing η-components in their diagonal
elements. Thus, as M is unitary:

(MηHAM)(MηHBM)η = MηHABηMη

=

[
ΣBη

11 ΣBη
12

0 0

]
Since ABη is normal, ΣBη

12 = 0, see Proposition 2. As Σ is non-
singular, Bη

12 = 0 and we have:

MηHAM =

[
Σ 0
0 0

]
MηHBM =

[
B11 0
0 B22

]
Therefore, if there is a unitary matrix M to diagonalise A, it is also
sufficient for B. �

(c) If MHAM = Λa and MηHBM = Λb are diagonal, we have
A = MΛaM

H and B = MηΛbM
H . Thus,

BA = MηΛbM
HMΛaM

H

= MηΛa(M
ηHMη)ΛbM

H = AηB

�

3.1.2. Derivation of matrix M in Corollary 1

The matrix M in Corollary 1 can be derived as follows4:
(a) Since A = USaU

H and B are both Hermitian:

D = Sa
− 1

2 UH so
{

DADH = I
DBDH = WΛbW

H

}
consider M = WHD, thus:

MAMH = WHDADHW = I = Λa

MBMH = WH(DBDH)W = Λb

(b) If A and B are both η-Hermitian and ABη is normal, a sin-
gle unitary matrix M is sufficient to diagonalise them simultane-
ously. In general, by applying quaternion singular value decompo-
sition (SVD) [6, 13] on A, it can be rewritten as A = USVH .
Using Lemma 1, A can be expressed as A = QSQηH in which
Q = U(Dη)

1
2 and U = VηD [7]. Thus, M = QH diagonalises

A and B.
(c) Since A = USaU

H is Hermitian and B is η-Hermitian:

D = Sa
− 1

2 UH so
{

DADH = I
DBDηH = WΛbW

ηH

}
4In this section, I is the identity matrix.
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Consider M = WHD, thus:

MAMH = WHDADHW = I = Λa

MBMηH = WH(DBDηH)Wη = Λb

3.2. Quaternion Uncorrelating Transform

Note that Corollary 1(c) leads to the quaternion uncorrelating trans-
form (QUT) as follows:

Corollary 2. For a random quaternion-valued vector x, there exists a
QUT matrix M which simultaneously whitens the covariance Cy =
I and diagonalises the η-covariance Cyη = Λη , where y = Mx.
The MATLAB5 implementation of the proposed QUT algorithm is
included in Table 1.

Table 1: Pseudo-MATLAB implementation of QUT.
function [M,y] = QUT(x)

if size(x, 1) > size(x, 2)
x = x.′;

end
n = length(x);
Cx = (x∗x′)

n
;

% Decompose the standard covariance matrix
[U,S] = svd(Cx);
% Derive the whitening matrix D and whitened data q
D = diag(diag(S).∧ − 0.5) ∗U′;
q = D ∗ x;
% Generate the ı, , and κ-covariances of the whitened data q
% The η-involution in (2) is implemented by the ‘invijk’ function
Cı = (q ∗ invijk(q, ‘i’)′)/n;
C = (q ∗ invijk(q, ‘j’)′)/n;
Cκ = (q ∗ invijk(q, ‘k’)′)/n;
% Analyse complementary covariances to select the imaginary
% unit with maximum correlation

c =

 norm(Cı − diag(diag(Cı)))
norm(C − diag(diag(C)))
norm(Cκ − diag(diag(Cκ)))

 ;

[∼, f ] = max(c.′);
% Define the desired unit axis using f , i.e if f = 1→ η = ı,
% f = 2→ η = , and f = 3→ η = κ.
% Apply QTakagi factorisation on the selected η-covariance,
% such that Cη = W ∗ S1 ∗ invijk(W, ‘η’)′. See [7]
[U1,S1,V1] = svd(Cη);
P = invijk(V1, ‘η’)′ ∗U1;
W = U1 ∗ diag(sqrt(diag(invijk(P, ‘η’))));
% Calculate the QUT matrix M and the decorrelated output y
M = W′ ∗D;
y = M ∗ x

3.3. Properness and Quaternion Strong Uncorrelating Trans-
form

The notion of properness or improperness is an important statistical
property in both complex and quaternion domains. Similar to the
complex domain, quaternion properness is characterised by the de-
gree of correlation and power ratio of imaginary components with
respect to the real component. However, the additional degrees of

5To use the MATLAB code, the modified version of quaternion toolbox
‘qtfm’ is required, which is available at http://www.surrey.ac.uk/cs/
people/clive_cheong_took/index.htm.

freedom in the quaternion domain means that there are two types of
properness: H-properness and Cη-properness.

A quaternion vector x is second order H-proper if and only if all
the complementary covariance matrices vanish, i.e. the vector x is
uncorrelated with its vector involutions xı, x, xκ. Note that for a
given quaternion vector x the degree of H-properness can be defined
in terms of a circularity coefficient ρwhich is calculated based on the
ratio of the complementary covariances to the standard covariance
matrix given by [8]

ρ =
|E{xxıH}|+ |E{xxH}|+ |E{xxκH}|

3E{xxH} ρ ∈ [0, 1] (5)

where ρ = 0 defines a H-proper, and ρ = 1 corresponds to H-
improper sources.

On the other hand, x is Cη-proper for an imaginary unit η ∈
{ı, , κ} if and only if the vector x is only correlated with xη . Thus,
for a Cη-proper process x, only the η-covariance Cxη = E{xxηH}
exists and QUT offers a convenient way to diagonalise both the co-
variance and the η-covariance matrices, as the other two covariance
matrices vanish. For instance, for a Cη-proper process x, QUT leads
to Cy = I, Cyı = Λı, and Cy = Cyκ = Λ = 0, where
y = Mx.
Remark#2: In the context of Cη-properness, QUT is regarded as the
quaternion strong-uncorrelating (Q-SUT) transform - an analogue
to the work in the complex domain by Eriksson and Koivunen [4].
However, without the Cη-properness condition, QUT is generally
not robust for decorrelating purposes.

4. SIMULATIONS AND DISCUSSION

4.1. ARMA Simulation

The first experiment evaluated the performance of the Q-SUT as a
source separation method under different levels of additive white
noise. Simulations were performed on multivariate widely linear
autoregressive moving average (ARMA) data. To this end, three un-
correlated quaternion-valued ARMA sources s were generated such
that each source was an Cı-proper signal. Then, they were mixed
using a 3 × 3 random matrix A drawn from the standard normal
distribution to obtain three mixtures as x = As. Overall, 50 sets of
data were generated to compute the averaged results.

In order to assess the effect of noise on the performance accuracy,
white noise was added so as to vary the signal to noise ratio (SNR)
from 0 to 25 dB. The performance was also assessed in terms of the
ı-circularity coefficient, such that E{xxH} = 1 was constant, and
ρi = |E{xxıH}| was manually adjusted from 0.5 to 1, see (5).

To evaluate the separation accuracy, the root mean square (RMS)
error was calculated among the original sources (s) and the estimated
sources (x̂) obtained via Q-SUT. Since Q-SUT suffers from the per-
mutation problem, the 3-D sources (both original and estimated)
were first averaged to provide a 1-D quaternion channel. Then, the
RMS error was calculated among the corresponding sources.

Fig. 1a illustrates the reconstruction error versus SNR and circu-
larity coefficient. It was shown that the RMS error decreases for
larger circularity coefficients6 and higher SNR values (lower noise
level). As expected, after applying Q-SUT, the Cx̂ı was diagonal
and Cx̂ = Cx̂κ = 0 for all simulations.

Furthermore, Fig. 1b and 1c represent the 3-D scatter plots of the
generated signals x versus the estimated signals x̂ obtained via Q-
SUT. Note that the elliptical scatter plots of the original signals con-
firmed their high correlation, while circular nature of the estimated
signals indicated successful decorrelation of Q-SUT.

6In this work, larger circularity was associated with the stronger correlation,
regardless of the power.
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Fig. 1: Results of the proposed Q-SUT method for decorrelation and BSS
of Cı-proper sources.

4.2. Alamouti-based Communication Systems

This section presents the application of the QUT for a practical com-
munication problem of Alamouti coding [14]. Consider a 2 × 2
source separation problem in H given by x = As[

x1

x2

]
=

[
a11 a12
a21 a22

] [
s1
s2

]
(6)

in which x = xa + xb and s = sa + sb where xa and xb are
two consecutive signals observed at the receiver; sa and sb are the
transmitted complex sources to be recovered. Following the work
in [8], the above equation corresponds to:[

x1a

x1b

]
=

[
s1a −s∗1b
s1b s∗1a

] [
a11α
a11β

]
+

[
s2a −s∗2b
s2b s∗2a

] [
a12α
a12β

]
∈ C[

x2a

x2b

]
=

[
s2a −s∗2b
s2b s∗2a

] [
a22α
a22β

]
+

[
s2a −s∗2b
s2b s∗2a

] [
a21α
a21β

]
∈ C

(7)
where aijτ represents the channel between the receiver of the i-th
user and the τ -th transmit antenna of the j-th user, τ ∈ {α, β}.

In this study, the sources were selected as binary and quadra-
ture phase shift keying (BPSK or QPSK) and 16-quadrature ampli-
tude modulation (QAM). Initially, we considered a scenario with
quaternion-valued mixing matrix A, where the pair of symbols s1a
and s1b of the first user were equal, shown in the left columns in
Fig. 2. For the sake of comparison, we also considered two cases
where the mixing matrix A was complex-valued and s1a and s1b
could be either equal or different, as in the middle and right columns
in Fig. 2.

After generating the observations x, QUT was applied to provide
an estimation of the sources as x̂. To this end, QUT decorrelated the
standard covariance and a unitary complementary covariance with
the maximum correlation, i.e. the unit axis in which marginal vari-
ables had highest correlation. Furthermore, QUT has been compared
with conventional complex SUT [4].
Note that when using a quaternion-valued mixing matrix and s1a =
s1b, the conventional SUT failed to recover the sources, see Fig. 2
L(b). However, for these cases, QUT provided reasonable estimates
of the sources in L(c).
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ĉ
2
b

R(b)

−2 0 2
−0.02

0

0.02

x̂
1
a

−2 0 2
−0.02

0

0.02

x̂
1
b

−2 0 2
−0.02

0

0.02

x̂
2
a

−2 0 2
−0.02

0

0.02

x̂
2
b

L(c)

−1 0 1
−0.02

0

0.02

x̂
1
a

−1 0 1
−5

0

5
x 10

−3

x̂
1
b

−1 0 1
−0.05

0

0.05

x̂
2
a

−2 0 2
−0.05

0

0.05

x̂
2
b

M(c)

−2 0 2
−0.02

0

0.02

x̂
1
a

−2 0 2
−0.02

0

0.02

x̂
1
b

−1 0 1 2
−0.05

0

0.05

x̂
2
a

−1 0 1 2
−0.05

0

0.05

x̂
2
b

R(c)

Fig. 2: Plots of communication constellations: (L) left column corresponds
to the case s1a = s1b with a quaternion mixing matrix, (M) middle col-
umn represents the s1a 6= s1b scenario with a complex mixing matrix and
(R) right column corresponds to s1a = s1b with a complex mixing matrix.
In each column, subplot (a) represents the original sources, (b) is the esti-
mated sources using complex SUT and (c) is the estimated sources using
QUT.

On the other hand, when using a complex-valued mixing matrix7

and s1a 6= s1b, the conventional SUT reconstructed a reasonable
version of either BPSK or QPSK sources, however, it still could not
recover the 16-QAM source, see Fig. 2 M(b). In contrast, QUT pro-
vided reconstruction of 16-QAM sources as well as the BPSK and
QPSK sources in M(c). Furthermore, when using a complex-valued
mixing matrix and s1a = s1b, QUT outperformed the Q-SUT by
providing higher distinct output, compare R(b) and R(c) in Fig. 2.
Recall that both QUT and Q-SUT suffer from the permutation prob-
lem and they estimate the sources in a random order - similar to most
ICA algorithms.

5. CONCLUSION

We have proposed a novel set of matrix decompositions for the joint
diagonalisation of η-Hermitian matrices. Of particular interest is the
proposed quaternion uncorrelating transform (QUT), which showed
the effectiveness of our method in an Alamouti-based source sepa-
ration problem. Furthermore, we hope that our findings in joint di-
agonalisation of quaternion matrices which satisfy conditions such
as normality of ABη , or AB = BA, or BA = AηB lay the
foundations for further research in quaternion signal processing.

7To this end, the channel response aib of the second transmitter antenna for
each i-th user was set to zero, although this is unlikely in practice.
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