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ABSTRACT

Magnetic resonant coupling (MRC) is an efficient method for realiz-
ing the near-field wireless power transfer (WPT). The use of multi-
ple transmitters (TXs) each with one coil can be applied to enhance
the WPT performance by coherently combining the magnetic field-
s induced by all TX coils in a beam toward the receiver (RX) coil,
a technique termed “magnetic beamforming”. In this paper, we s-
tudy the optimal magnetic beamforming design for an MRC-WPT
system with multiple TXs and a single RX. We formulate a prob-
lem to jointly optimize the currents flowing through different TXs
so as to minimize the total power drawn from their voltage sources,
subject to the minimum power required by the RX load as well as
the practical constraints on the peak voltage and current at all TXs.
For the special case of identical TX resistances and without the peak
voltage and current constraints, we show that the optimal current at
each TX should be proportional to the mutual inductance between
its TX coil and the RX coil. In general, the problem is a non-convex
quadratically constrained quadratic programming (QCQP), which is
reformulated as a semidefinite programming (SDP) with rank-one
constraint. We show that the semidefinite relaxation (SDR) of the
reformulated problem is tight and hence the problem is solved opti-
mally. Numerical results show that the optimal magnetic beamform-
ing design significantly enhances the deliverable power as well as
the power efficiency over the uncoordinated WPT benchmark with
equal current allocation over TXs.

Index Terms— Wireless power transfer, magnetic resonant cou-
pling, magnetic beamforming, semidefinite relaxation

1. INTRODUCTION

Near-field wireless power transfer (WPT) has drawn significan-
t interest, due to its high efficiency for delivering power to electric
loads without the need of any wire. Near-field WPT can be realized
by inductive coupling (IC) [1, 2] for short-range applications in cen-
timeters, or magnetic resonant coupling (MRC) [3, 4] for mid-range
applications up to a couple of meters. Although the short-range W-
PT has been in widely commercial use, the mid-range WPT is still
largely under research and has received growing attention recently.
The recent progress on mid-range WPT research and applications
can be found in e.g., [4] and the references therein.

The MRC-WPT system with multiple transmitters (TXs) and/or
multiple receivers (RXs) has been studied in the literature [5–8].
The MRC-WPT system with only two TXs and one RX is studied
in [5, 6], while the analytical results therein cannot apply to the case
of more than two TXs. Recently, an “Magnetic MIMO” wireless
charging system is reported in [7] which can charge a phone 40cm
away from the array of TX coils, independent of the phone’s ori-
entation. For an MRC-WPT system with multiple RXs, the load
resistances of RXs are jointly optimized in [8] to minimize the to-
tal transmit power while achieving fair power delivered to the loads
regardless of their near-far distances to the TX. Deploying multiple

TXs can help focus their generated magnetic fields more efficiently
toward the RX [7], hence achieving a magnetic beamforming gain,
in a manner analogous to multi-antenna beamforming in the far-field
wireless communications [9]. However, to our best knowledge, there
is limited work that optimizes the magnetic beamforming design un-
der practical circuit constraints, for an MRC-WPT system with arbi-
trary number of TXs, which thus motivates this paper.

In this paper, as shown in Fig. 1, we consider an MRC-WPT
system with a single RX and multiple TXs where their source cur-
rents (or equivalently voltages) can be adjusted such that the induced
magnetic fields are optimally combined at the RX, to maximize the
amount of power transferred. We formulate a problem to minimize
the total power drawn from all TXs by jointly optimizing the currents
at all TXs, subject to the minimum power required by the RX load
as well as the practical constraints on the peak voltage and current at
all TXs. For the special case of identical TX resistances and without
the TXs’ voltage and current constraints, the optimal current at each
TX is shown to be proportional to the mutual inductance between its
TX coil and the RX coil. In general, our formulated problem is a
non-convex quadratically constrained quadratic programming (QC-
QP). By recasting the problem as a semidefinite programming (SDP)
with rank-one constraint, we show that its semidefinite relaxation (S-
DR) [10] is tight by exploiting the structure of the problem, i.e., the
optimal solution to the SDR problem is always rank-one. The op-
timal solution to the original QCQP problem can thus be obtained
efficiently via standard convex optimization software [11]. Numer-
ical results show that the optimal magnetic beamforming solution
significantly enhances the performance of WPT over the benchmark
scheme with equal current allocation over all TXs.

2. SYSTEM MODEL

As shown in Fig. 1, we consider a multiple-input single-output
(MISO) MRC-WPT system with N ≥ 1 TXs each equipped with a
single coil, and one single-coil RX. Each TX n, n ∈ {1, · · · , N},
is connected to a stable energy source supplying sinusoidal voltage
over time given by ṽn(t) = Re{vnejwt}, with vn denoting the
complex voltage and w > 0 denoting the operating angular fre-

quency. Let ĩn(t) = Re{inejwt} denote the steady-state current
flowing through TX n, with the complex current in. This current
produces a time-varying magnetic flux in the n-th TX coil, which
passes through the RX coil and induces time-varying currents in it.

Let ĩ0(t) = Re{i0ejwt} denote the steady-state current in the RX
coil, with the complex current i0.

Let Mn0 and Mnk denote the mutual inductance between the
n-th TX coil and the RX coil, and the mutual inductance between
the n-th TX coil and the k-th TX coil with k �= n, respectively.
The mutual inductance is a real number that depends on the physical
characteristics of each pair of coils such as their relative distance,
orientations, etc. [7]
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Fig. 1. System model of an MISO MRC-WPT system

We denote the self-inductance and the capacitance of the n-th
TX coil (RX coil) by Ln > 0 (L0 > 0) and Cn > 0 (C0 > 0),
respectively. The capacitance values are set as Cn = 1

Lnw2 , n =

1, . . . , N, and C0 = 1
L0w2 , such that all TXs and the RX oper-

ate at the same resonant angular frequency w. Let rn > 0 de-
note the total source resistance (including the internal parasitic re-
sistance) of the n-th TX. Define the diagonal resistance matrix as
R � diag{r1, . . . , rN}. The resistance of the RX, denoted by
r0 > 0, consists of the parasitic resistance rp,0 > 0 and the load
resistance rl,0 > 0, i.e., r0 = rp,0 + rl,0. The load is assumed to be
purely resistive.

In this paper, we assume that there is a controller that can com-
municate with all TXs as well as the RX such that it can obtain the
information of all system parameters required to design the magnetic
beamforming over TXs. For convenience, we treat the complex TX
current values in’s as design variables,1 which can be optimally set
by the controller to realize magnetic beamforming.

By applying Kirchhoff’s circuit law to the RX, we obtain its
current i0 as follows

i0 =
jw

r0

N∑
n=1

M0nin. (1)

Define the vector of all TX currents as i = [i1, . . . , iN ]T . Define the
vector of mutual inductances between the RX coil and all TX coils
as m = [M01 M02 · · · M0N ]T . From (1), the power delivered to
the RX load is obtained as

p0 =
1

2
|i0|2rl,0 =

w2rl,0
2r20

iHmmT i. (2)

By applying Kirchhoff’s circuit law to each TX n, we obtain its
source voltage as

vn = rnin + jw
N∑

k=1, �=n

Mnkik − jwMn0i0

1In practice, it is more convenient to use voltage source than curren-
t source. Therefore, after obtaining the TX current values in’s, the resulting
voltage values vn’s can be computed and set by the controller accordingly.

=

(
rn+

M2
n0w

2

r0

)
in+

∑
k �=n

(
jwMnk+

Mn0M0kw
2

r0

)
ik. (3)

We define an N ×N square matrix B as follows,

B = B+ jB̂, (4)

where the elements in B and B̂ are respectively given by

Bnk =

⎧⎨⎩ rn +
M2

n0w
2

r0
, if k = n

Mn0M0kw
2

r0
, otherwise

(5)

B̂nk =

{
0, if k = n

−wMnk, otherwise
(6)

Note that the matrices B, B and B̂ are all symmetric, since Mnk =

Mkn, ∀n �= k. Denote the n-th column of the matrices B, B, B̂

by bn, bn, b̂n, respectively. Moreover, the matrix B is positive
semi-definite (PSD), as it can be rewritten as

B = R+
w2mmT

r0
. (7)

The source voltage of each TX n given in (3) can be equivalently
rewritten as

vn = bH
n i. (8)

From (4) and (8), the total power drawn from all TXs, denoted
by p, is given by

p =
1

2
Re

{
N∑

n=1

iHbnin

}
=

1

2
iHBi. (9)

Remark 1. From (5) and (9), it is observed that p depends on the
mutual inductance Mn0 between the coils of each TX n and the RX,
but is not related to the mutual inductance Mnk between any pair of
TX coils.

3. PROBLEM FORMULATION

In this section, we formulate the magnetic beamforming design
problem to minimize the total power drawn from all TXs by jointly
optimizing the TX currents i, subject to the following constraints:
the power delivered to the RX load should meet a minimum level
β0 > 0, i.e., p0 ≥ β0; the peak amplitude of the voltage vn at
each TX n is Vn, i.e., |vn| ≤ Vn; and the peak amplitude of the
current in at each TX n is An, i.e., |in| ≤ An. Let Qn be the
rank-one matrix with the n-th diagonal element equal to one and all
other elements being zero. From (2), (8) and (9), the problem is
formulated as follows.

(P1) : min
i∈CN

1

2
iHBi (10a)

s. t.
w2rl,0
2r20

iHmmT i ≥ β0 (10b)

iHbnb
H
n i ≤ V 2

n , n = 1, 2, · · · N (10c)

iHQni ≤ A2
n, n = 1, 2, · · · N (10d)

(P1) is a non-convex QCQP problem [11]. Although solving such a
problem is non-trivial in general [10], we obtain the optimal solution
to (P1) in the next section.
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4. OPTIMAL SOLUTION

4.1. Optimal Solution to (P1) without Constraints (10c) and (10d)

In this subsection, we consider the simplified problem of (P1)
without the peak voltage and current constraints given in (10c) and
(10d), respectively, to obtain the performance limit of magnetic

beamforming. Let i = ī+ j î. It is then observed that the real-part ī

and the imaginary-part î contribute in the same way to the total TX
power in (10a) as well as the delivered load power in (10b), since
both B and mmT are symmetric matrices. As a result, we can set

î = 0 and adjust ī only, i.e., we need to solve

(P2) : min
ī∈RN

1

2
īTBī (11a)

s. t.
w2rl,0
2r20

īTmmT ī ≥ β0 (11b)

The optimal solution to (P2) is given by the following theorem.

Theorem 1. The optimal solution to (P2) is ī� = αu1, where α is

a constant such that the constraint (11b) holds with equality, and u1

is the eigenvector associated with the minimum eigenvalue, denoted

by γ1, of the matrix

T = R+
w2(r0 − v�rl,0)

r20
mmT , (12)

where v� is chosen such that γ1 = 0.

Specifically, for the case of identical TX resistances, i.e., R �
rI, the optimal solution to (P2) is

ī� =
αm

‖m‖2 . (13)

Proof. Due to the space limitation, the proof is omitted here, and
given in an online technical report of this paper [12].

Remark 2. Theorem 1 indicates that for the special case of identical
TX resistances, the optimal current of each TX n is proportional to
the mutual inductance M0n between the RX and TX n. This is anal-
ogous to the maximal-ratio-transmission (MRT) based beamforming
in wireless communications [9]. However, magnetic beamforming
operates over the near-field and thus the phase of the TX current
only needs to be 0 or π (depending on positive or negative mutual
inductance value); while in wireless communications, beamfoming
operates over the far-field, and as a result, the beamforming weight
at each transmit antenna needs to be set to be of the opposite phase
of the wireless channel which can be arbitrarily distributed between
0 and 2π [13].

4.2. Optimal Solution to (P1) with All Constraints

Define X � iiH , M � mmT , and Bn � bnb
H
n . Thus, (P1)

can be equivalently rewritten as the following SDP with rank-one
constraint.

(P1−SDP) : min
X∈CN×N

1

2
Tr

(
BX

)
(14a)

s. t. Tr (MX) ≥ 2r20β0

w2rl,0
(14b)

Tr (BnX) ≤ V 2
n , n = 1, · · · N (14c)

Tr (QnX) ≤ A2
n, n = 1, · · · N (14d)

X � 0, rank (X) = 1 (14e)

where X � 0 indicates that X is PSD.
In general, (P1−SDP) is non-convex due to the rank constraint

in (14e) [10]. By ignoring the rank-one constraint in (14e), we ob-
tain the SDR of (P1−SDP), denoted by (P1−SDR), which is con-
vex. Next, we show the following theorem on the optimal solution to
(P1), by exploiting the special structure of the SDR of (P1−SDP).

Theorem 2. The SDR of (P1−SDP) is tight, i.e., the optimal so-

lution X� to (P1−SDR) is always rank-one with X� = i� (i�)H ,

where i� is the optimal solution to (P1).

Proof. Let λ ≥ 0,ρ = [ρ1, . . . , ρN ]T ≥ 0, and μ = [μ1, . . . , μN ]T

≥ 0 be the dual variables corresponding to the constraint(s) given
in (10b), (10c), and (10d), respectively. Let the matrix S � 0 be the
dual variable corresponding to the constraint X � 0 in (14e). The
Lagrangian of (P1−SDR) is then written as

L(X, λ,ρ,S) =
1

2
Tr

(
BX

)− λ

(
Tr (MX)− 2r20β0

w2rl,0

)
+ (15)

N∑
n=1

ρn
(
Tr (BnX)−A2

n

)
+

N∑
n=1

μn

(
Tr (QnX)−D2

n

)−Tr (SX) .

It can be checked that (P1−SDR) satisfies the Slater’s con-
dition and thus the strong duality holds for this problem. Let
X�, λ�,ρ�,μ�, and S� be the optimal primal and dual variables,
respectively. Moreover, the Karush−Kuhn−Tucker (KKT) condi-
tions [11] of (P1−SDR) are given by

∇XL(X�, λ�,ρ�,μ�,S�
)

=
1

2
B− λ�M+

N∑
n=1

ρ�nBn +

N∑
n=1

μ�
nQn − S�

= 0. (16)

S�X�
= 0. (17)

Next, by multiplying (16) by X� on both sides and substituting
(17) into the obtained equation, we have

1

2
BX� − λ�MX�

+

N∑
n=1

ρ�nBnX
�
+

N∑
n=1

μ�
nQnX

�
= 0. (18)

We thus have

rank

((
1

2
B+

N∑
n=1

ρ�nBn +

N∑
n=1

μ�
nQn

)
X�

)
= rank (MX�

) ≤ rank (M) = 1. (19)

Since B is PSD, the matrix

(
1
2
B+

N∑
n=1

ρ�nBn+
N∑

n=1

μ�
nQn

)
must

have full rank. Hence, (19) implies that

rank (X�
)=rank

((
1

2
B+

N∑
n=1

ρ�nBn+

N∑
n=1

μ�
nQn

)
X�

)
=1.

(20)

Since X� is rank-one, it can be written as X� = i� (i�)H . The
vector i� is thus the solution to (P1−SDP) and hence (P1).

Remark 3. The optimal solution to (P1−SDR) can be efficiently
solved via e.g., the interior-point method [11], and the solution ob-
tained numerically always has rank-one in accordance to Theorem 2.
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5. NUMERICAL RESULTS

As shown in Fig. 2, we consider an MISO MRC-WPC system
with N = 5 TX coils and one RX coil, each of which has 100 turns
and a radius of 0.1 meter. We use cooper wire with radius of 0.1 mil-
limeter for all coils. All the TX coils are in the xy-plane, while the

RX coil is in the plane of z = 3
√

2
4

. The resistance of all TXs is set
identically as 0.336Ω. For the RX, its parasitic resistance and load
resistance are rp,0 = 0.336Ω and rl,0 = 50Ω, respectively. The self
and mutual inductances are given in Table 1. All the capacitances
are set such that the resonance angular frequency is w = 6.78× 2π
rad/second [8]. We assume that the peak voltage/current constraints
are Vn = 30

√
2 V and An = 5

√
2 A.
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Fig. 2. Simulation setup

Table 1. Mutual/Self inductances (μH)

TX 1 TX 2 TX 3 TX 4 TX 5

TX 1 5886.8 0.1050 0.0370 0.1050 0.2984
TX 2 0.1050 5886.8 0.1050 0.1253 0.2984
TX 3 0.0370 0.1050 5886.8 0.1050 0.2984
TX 4 0.1050 0.0370 0.1050 5886.8 0.2984
TX 5 0.2984 0.2984 0.2984 0.2984 5886.8
RX 1 -1.0172 0.02570 0.02622 0.02570 -0.1508

For performance benchmark, we consider an uncoordinated W-
PT system with all TXs set to have equal current. We compare this
system with our proposed coordinated WPT with optimal magnet-
ic beamforming without or with the peak voltage and current con-
straints at all TXs. We define the efficiency of WPT as the ratio of
the delivered load power β0 to the total TX power p, i.e., η � β0

p
.

Fig. 3 plots the total TX power p and the efficiency η versus the
delivered load power β0. For the case without TX voltage/current
constraints, it is observed that the WPT efficiencies of magnetic
beamforming and benchmark system are 73.73% and 39.1%, respec-
tively.

For the case with TX voltage/current constraints, it is observed
that magnetic beamforming can deliver power up to 35 W to the
RX with the efficiency of 46.62%; while the benchmark system can
deliver at most 14 W to the RX with the efficiency of 39.1%. Thus,
besides the WPT efficiency improvement, magnetic beamforming
also significantly enhances the maximum power deliverable to the
load, under practical circuit constraints.

Fig. 3 also shows that the WPT efficiency decreases over 24 <
β0 < 35. To explain this observation and obtain insights for mag-
netic beamforming, we investigate the two cases of β0 = 24 W and
35 W in the following. The optimal currents and consumed power
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Fig. 3. TX power and efficiency v.s. RX load power

of all TXs are given in Table 2. For β0 = 24 W, TX 1 carries a
current less than the peak current, and most energy is consumed by
TX 1 that has the largest mutual inductance with the RX. This im-
plies that the TX with larger mutual inductance with the RX should
carry higher current, and thus consume more power to maximize the
efficiency of WPT. In this case, all TX current or voltage constraints
are inactive, and it can be further verified that the current of each
TX is proportional to its mutual inductance with the RX. This is in
accordance with Theorem 1. In contrast, to support higher RX load
power of 35 W, TXs 1 and 5 need to carry the peak current, and TXs
2, 3 and 4 increase their carried currents. The cost is the decreased
efficiency, due to smaller mutual inductance between TXs 2, 3, 4, 5
and the RX, than that between TX 1 and the RX.

Table 2. Comparison under different load power

β0 = 24 β0 = 35

(i�1, p
�
1) (−6.9840, 31.79) (−7.071, 37.25)

(i�2, p
�
2) (0.1765, 0.0203) (6.716, 8.27)

(i�3, p
�
3) (0.1800, 0.0211) (6.852, 8.61)

(i�4, p
�
4) (0.1765, 0.0203) (6.716, 8.27)

(i�5, p
�
5) (−1.0359, 0.6994) (−7.071, 12.68)

6. CONCLUSION

This paper studied the optimal magnetic beamforming for the
MISO MRC-WPT system. We formulate an optimization problem
to minimize the total power drawn from all TXs by jointly designing
the currents in all TXs, subject to the RX load power constraint and
the practical constraints on the peak voltage and current values at all
TXs. For the special case of identical TX resistances and without
the TX voltage/current constraints, the optimal current of each TX
is shown to be proportional to the mutual inductance between its TX
coil and the RX coil. In general, the formulated QCQP problem is
non-convex while we efficiently solve it optimally by applying the S-
DR technique and proving the uniqueness of rank-one solution. Nu-
merical results show that the optimal magnetic beamforming signif-
icantly enhances both the deliverable power and the WPT efficiency,
compared to the uncoordinated WPT with equal current allocation
over all TXs. Furthermore, it is shown that the practical voltage and
current constraints at TXs can degrade the performance of magnetic
beamforming, especially when the load power is large.
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