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Abstract—This paper investigates the design of optimal space
signaling for an intensity modulated direct detection multi-
input-multi-output optical wireless communication system with
independent and non-identically log-normal distributed channel
coefficients. In order to optimize both large-scale diversity and
small-scale diversity gains with a maximum likelihood detector,
the design problem is formulated into a max-min optimization
problem with continuous-discrete mixed design variables. Two
techniques are proposed to solve the problem: 1) by taking
advantage of the full large scale diversity condition, all spatial
codewords are properly sorted to simplify the inner minimization
problem with the discrete design variables; and 2) a novel
geometrically weighted inequality is established to carefully deal
with a specific objective function of the power products in
the outer maximization problem with the continuous variables.
Among all the high dimensional nonnegative space signaling
vectors, we rigorously prove that the spatial repetition signaling
(RS) with an optimal power allocation is optimal under an
average optical power constraint. Simulation results indicate that
in a high signal to noise ratio regime, our optimally designed
space signaling has better error performance than RS, which is
the best space signaling available in literature for this application.

Index Terms—Intensity modulation with direct detection
(IM/DD), multi-input-multi-output (MIMO), optical wireless
communication (OWC), log-normal fading channels, large scale
and small scale diversity gains, repetition signaling (RS), maxi-
mum likelihood (ML) decoding.

I. INTRODUCTION

Recently, intensity modulated direct detection optical wire-
less communication (IM/DD OWC) [1]–[6] has become an
attractive research area. To attain more robust error perfor-
mance in the atmospheric environments, IM/DD MIMO-OWC
is usually deployed [7]–[15] with properly designed diversity
transmitters. However, the diversity transmission for IM/DD
MIMO-OWC cannot be designed by directly following the
existing techniques for MIMO radio frequency (RF) [16]–
[22] and coherent MIMO-OWC [23]–[27], since there are two
major constraints on the signal of IM/DD MIMO-OWC [28].
The first major constraint is that the transmitted signals of
IM/DD MIMO-OWC are nonnegative. It is for this reason that
the presently well-established MIMO-RF [16] and coherent
MIMO-OWC techniques [26], [27] cannot be employed for
IM/DD MIMO-OWC directly. Although they can provide
a full diversity gain by adding some proper direct-current
components into transmitter designs [7], [10], [11], some

modified orthogonal space time block codes have worse error
performance than the space-only repetition signaling (RS) [8],
[9], [12], [13]. The second major constraint is that the channel
coefficients of IM/DD MIMO-OWC are also nonnegative [28].
This constraint on channels renders a properly designed space-
only transmission of IM/DD MIMO-OWC to enable full
diversity [14], [15]. In fact, the well known space-only scheme,
RS, which transmits the same symbol across all the transmitter
apertures [8], [9], [12], [13], is the best existing full diversity
space signaling [8], [9], [12]–[15], when no channel state
information at the transmitter (CSIT) is available.

Therefore, we consider the design of space signaling for an
IM/DD MIMO-OWC system. In this scenario, when perfect
CSIT is available, the selection of the transmitter apertures
with the greater optical path scintillation was proposed in [29]–
[32]. However, perfect CSIT is not easily obtainable in prac-
tice. Thus, we specifically consider the space signaling for an
IM/DD MIMO-OWC system over commonly used log-normal
fading channels [33], [34] where different channel coefficients
have nonidentical variances resulted from atmospheric envi-
ronments [35], [36]. More recently, we have established an
error performance criterion [14], [15] for the design of a space
signaling with a maximum likelihood (ML) detector. Using
this criterion, we formulate the design problem of an optimal
space signaling maximizing both large-scale and small-scale
diversity gains into a max-min optimization problem with
continuous-discrete mixed design variables. By sorting all the
space signal vectors and developing a novel geometrically-
weighted inequality, we will prove that for a general IM/DD
MIMO-OWC system, RS with an optimal power allocation is
the optimal space signaling.

II. SYSTEM MODEL

Let us consider an M × N IM/DD MIMO-OWC system
equipped with M receiver apertures and N transmitter aper-
tures, which transmit a space signal x = [x1, x2, · · · , xN ]

T

from a constellation X =
{
xk, k = 0, 1, · · · , 2K − 1

}
to be

designed. To satisfy the unipolarity requirement of intensity
modulation, the symbol xn for n = 1, 2, · · · , N to be
transmitted from the n-th transmitter aperture is non-negative.
These symbols are then transmitted to the receivers through an
M×N channel matrix H, the elements of which are flat-fading
path coefficients. Therefore, the received signal, denoted by an
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M × 1 vector y, can be written in the following form

y = Hx + n, (1)

where the entries of H are assumed to be independent
and log-normal distributed, i.e., hij = ezij , where zij ∼
N
(
µij , σ

2
ij

)
, i = 1, · · · , M, j = 1, · · · , N . The proba-

bility density function (PDF) of hij is

fH (hij) =
1√

2πhijσij
e
− (lnhij−µij)

2

2σ2
ij

where σ2
ij is altitude-dependent and determined by the light

wavelength, the link distance and the root mean square wind
speed [35], [36], implying that σ2

ij may be different in practical
scenarios. The PDF of H is f (H) =

∏M
i=1

∏N
j=1 fH (hij).

From [28], [35], [37], the noise vector n is modelled as signal-
independent AWGN with zero mean and co-variance matrix
σ2
n

M IM×M .
The basic assumptions throughout this paper are made as

follows:
1) Power constraint. In most practical optical sources with

intensity modulation and direct detection, a power constraint
is usually on the amplitude sum average of the nonnegative
optical signals [28], [38], i.e., 1

2K

∑2K−1
k=0

∑N
n=1 xnk ≤ 1.

2) Channel information. The receiver exactly knows CSI
and the transmitter only knows the following vector in terms
of the channel variances, 1

Ω [Ω1, · · · , ΩN ]
T , where Ωj =∑M

i=1 σ
−2
ij and Ω =

∑N
j=1 Ωj .

Under the above assumptions, we specifically aim
at designing the optimal space constellation X =
{x0, · · · , x2K−1} ⊆ RN+ that maximizes both the large-
scale diversity gain and the small-scale diversity gain, where
notation RN+ denotes the set of all the nonnegative N × 1
vectors.

III. DIVERSITY GAINS OF SPACE SIGNALINGS FOR IM/DD
MIMO-OWC

In this section, we first briefly review our recently es-
tablished error performance criterion for the space signaling
design and then, introduce the concept of large-scale diversity
gain and small-scale diversity gain for the IM/DD MIMO-
OWC system over log-normal fading channels [14], [15].

Proposition 1: [14], [15] For ∀x, x̂ ∈ X with x 6= x̂, if
e = x̂ − x is positive up to a scale, then, the average pair-
wise error probability for M ×N IM/DD MIMO-OWC with
a space signaling is bounded by

CL (ln ρ)
−MN

e−
Dl
8 (ln ρ+ln Ω−ln(M

∑N
k=1 e

2
k))

2

≤ P (x→ x̂) ≤ PU (x→ x̂) +O
(
e−
Dl
8 ln2 ρ

)
(2)

where ρ is the signal-to-noise ration (SNR), Dl = Ω, CL =∏M
i=1

∏N
j=1 σij

(4π)MNe−
MN

2
Q

(
1
2

(∑N
k=1 e

2
k

)− 1
2

)
,

PU (x→ x̂) = CUG (e)

(
ρ

ln2 ρ

)Ω
4 ln(NΩ

M )− 3
4 lnDs(e)

× (ln ρ)
−MN

e
−Dl8 ln2 ρ

ln2 ρ

where CU = NMN

2
∏M
i=1

∏N
j=1 σij

e−
Ω
8 ln2(NΩ

M ),

Ds (e) =
∏N
j=1 |ej |Ωj and G (e) =

exp
(

1
2

∑M
i=1

∑N
j=1 (ln |ej |σij )2

) (
NΩ
M

) ln lnDs(e)
2 . �

To make PU (x→ x̂) decay as fast as possible against increas-
ing SNRs, we should optimize the following three factors of
PU (x→ x̂):

1) Large-scale diversity gain. When SNR is sufficiently
high, the exponentially decaying speed of PU (x→ x̂) is
mainly determined by Dl. For this reason, we call Dl the
large-scale diversity gain. When we design the optimal
space signaling, a full large-scale diversity achievement
should be satisfied first by utilizing up all the MN terms
in Dl.

2) Small-scale diversity gain. By Proposition 1, Ds (e) =∏N
j=1 |ej |Ωj dictates the polynomial decaying of ρ

ln2 ρ
,

which is relatively small-scale compared with the large-
scale exponential decaying speed. Therefore, we name
Ds (e) small-scale diversity gain. Under the condi-
tion that full large-scale diversity gain is assured,
mineDs (e) should be maximized.

3) Coding gain. Since G (e) only affects the horizontal shift
of the error curve, we define this term as coding gain.
When both large-scale diversity gain and small-scale
diversity gain are optimized and if there remain design
freedoms, maxe G (e) should be further minimized.

IV. DESIGN OF OPTIMAL SPACE SIGNALING

Our primary task of this section is to design the optimal
constellation X that maximizes both the small-scale diversity
gain and the large-scale diversity gain.

A. Problem and Simplification

Let us consider an M × N IM/DD MIMO-OWC with
a space constellation X . For such system, with the design
criterion established in Proposition 1, our main target in this
paper is to solve the following optimization problem:

Original Main Problem: Find a space constellation X ={
xk, k = 0, 1, · · · , 2K − 1

}
⊆ RN such that

1) the large-scale diversity gain is maximized first;
2) when a full large-scale diversity achievement is fulfilled,

we then optimize the small-scale diversity gain, i.e.,

max
xk

min
0≤k2 6=k1≤2K−1

N∏
n=1

|xnk2
− xnk1

|Ωn (3a)

s.t.∀k2 > k1,xk2 − xk1 ∈ RN+ . (3b)

subject to 1
2K

∑2K−1
k=0

∑N
n=1 xnk = 1. �

By Proposition 1, X assures full large-scale diversity gain if
and only if e = x̂ − x 6= 0 is positive up to a scale. This
necessary and sufficient condition enables us to sort all the
entries of X , x0, · · · , x2K−1 ∈ RN+ , such that

x0 < · · · < x2K−1 (4)

where notation “a < b” means that the entries of
b − a are all positive. Note that the objective of (3) is

3932



a function with continuous and discrete variables. Here,
one of the main challenges is how to deal with the inner
minimization problem involving the discrete variables,
i.e., mink1,k2∈{0, ··· , 2K−1},k2>k1

∏N
n=1 |xnk2 − xnk1 |Ωn .

Using (4), ∀k1, k2 ∈
{

0, 1, · · · , 2K − 1
}

and
k2 ≥ k1 + 1, we have xnk2 ≥ xn(k1+1) > xnk1 ,
therefore, resulting in

∏N
n=1 |xnk2

− xnk1
|Ωn =∏N

n=1

(
xnk2

− xn(k1+1) + xn(k1+1) − xnk1

)Ωn ≥∏N
n=1

(
xn(k1+1) − xnk1

)Ωn , where the equality holds
if and only if k2 = k1 + 1. Hence, we obtain
mink1,k2∈{0, ··· , 2K−1},k2>k1

∏N
n=1 |xnk2

− xnk1
|Ωn =

mink∈{0, ··· , 2K−2}
∏N
n=1

(
xn(k+1) − xnk

)Ωn . This shows
that the original main problem is transformed into the
following equivalent optimization problem:

Problem 1: For any given positive integers N and K, find a
constellation X =

{
xk, k = 0, 1, · · · , 2K − 1

}
⊆ RN+ such

that

max
xk

min
k∈{0, ··· , 2K−2}

N∏
n=1

(
xn(k+1) − xnk

)Ωn (5a)

s.t.

{
xk+1 − xk > 0
1

2K

∑2K−1
k=0

∑N
n=1 xnk = 1.

(5b)

�
Here, we would like to make an important emphasis on the

fact that it is the positivity of the error vectors or the vector
version of the strict monotonicity of all the space signal vectors
assuring the full-scale diversity gain that results successfully
in significantly simplifying the inner discrete minimization
problem in the original main problem, i.e., the optimization
problem (3).

B. Main Lemma

To deal with the power product in the objective function
of (5), let us first develop an inequality resulted from Jensen’s
inequality, which will play another key role in allowing us to
attain an explicit expression for the optimal space signaling.

Lemma 1: If wi > 0 and xi > 0 for i = 1, · · · , N , then,

we have
∏N
i=1 x

wi
i ≤

(∑N
i=1 xi∑N
i=1 wi

)∑N
i=1 wi∏N

i=1 w
wi
i , where the

equality holds if and only if xi =
wi

∑N
i=1 xi∑N

i=1 wi
.

Proof : First, the Jensen’s inequality [39] states that for
λi ≥ 0,

∑N
i=1 λi = 1, any concave function f (t) with respect

to t satisfies that
∑N
i=1 λif (ti) ≤ f

(∑N
i=1 λiti

)
, where the

equality holds if and only if t1 = · · · = tN . Now, by
specifically taking concave function f (t) = ln t for t > 0,
ti = xi

wi
, and λi = wi∑

i=1 wi
for wi > 0 and xi > 0, we have

N∑
i=1

λi ln ti ≤ ln

N∑
i=1

λiti = ln

∑
i=1 xi∑
i=1 wi

(6)

where the equality holds if and only if x1

w1
= · · · = xN

wN
. In

addition, notice that the left side of (6) can be rewritten as∑N
i=1 λi ln ti =

∑N
i=1

wi∑
i=1 wi

lnxi −
∑N
i=1

wi∑
i=1 wi

lnwi =

1∑
i=1 wi

(
ln
∏N
i=1 x

wi
i − ln

∏N
i=1 w

wi
i

)
. Substituting this

equality into (6) leads to the following inequality
1∑

i=1 wi

(
ln
∏N
i=1 x

wi
i − ln

∏N
i=1 w

wi
i

)
≤ ln

∑
i=1 xi∑
i=1 wi

.

After some manipulations, we arrive at ln
∏N
i=1 x

wi
i ≤

ln
∏N
i=1 w

wi
i + ln

(∑
i=1 xi∑
i=1 wi

)∑
i=1 wi

, which is equivalent to∏N
i=1 x

wi
i ≤

(∑N
i=1 xi∑N
i=1 wi

)∑N
i=1 wi∏N

i=1 w
wi
i , where the equality

holds if and only if xi =
wi

∑N
i=1 xi∑
wi

. This completes the proof
of Lemma 1.

C. Optimal Space Signaling

In this subsection, we aim at rigorously solving Problem 1,
whose solution, in fact, is given by theorem below:

Theorem 1: The optimal solution to (5) is determined by

X̃ =
{
kp, k = 0, 1, · · · , 2K − 1

}
(7)

where p = 2[Ω1, ··· , ΩN ]T

Ω(2K−1)
. �

Proof : On one hand, we notice that when X = X̃ , given
by (7), we can have

min
0≤k≤2K−2

N∏
n=1

(
xn(k+1) − xnk

)Ωn
=

2Ω
∏N
n=1 ΩΩn

n

((2K − 1) Ω)
Ω

(8)

On the other hand, we claim that for any constellation X
satisfying the power constraint, the following inequality is true,

min
0≤k≤2K−2

N∏
n=1

(
xn(k+1) − xnk

)Ωn ≤ 2Ω
∏N
n=1 ΩΩn

n

((2K − 1) Ω)
Ω

(9)

Otherwise, if there exists a constellation X =
X̆ = {x̆k, k = 0, 1, · · · , 2K − 1} such that
min0≤k≤2K−2

∏N
n=1

(
x̆n(k+1) − x̆nk

)Ωn
>

2Ω ∏N
n=1 ΩΩn

n

((2K−1)Ω)Ω ,
then, ∀k ∈

{
0, 1, · · · , 2K − 2

}
, we attain

N∏
n=1

(
x̆n(k+1) − x̆nk

)Ωn
>

2Ω
∏N
n=1 ΩΩn

n

((2K − 1) Ω)
Ω

(10)

By Lemma 1, we have
∏N
n=1

(
x̆n(k+1) − x̆nk

)Ωn ≤∑N
n=1

(
x̆n(k+1) − x̆nk

)Ω∏N
n=1

(
Ωn
Ω

)Ωn . Substituting this in-
equality into (10) yields that ∀k ∈ {0, 1, . . . , 2K − 2},∑N
n=1 x̆n(k+1) −

∑N
n=1 x̆nk >

2
2K−1

. It follows that

N∑
n=1

x̆nk >
2k

2K − 1
+ k

N∑
n=1

x̆n0 (11)

for k = 1, 2, · · · , 2K − 1. Now, summing all the
inequalities in (11) yields that

∑2K−1
k=0

∑N
n=1 x̆nk >

2
∑2K−1
k=0 k

2K−1
+

(
1 +

2K(2K−1)
2

)∑N
n=1 x̆n0 = 2K +(

1 +
2K(2K−1)

2

)∑N
n=1 x̆n0 ≥ 2K , which contradicts

with our power constraint 1
2K

∑2K−1
k=0

∑N
n=1 xnk = 1. Thus,

inequality (9) is indeed true. Now, combining (8) with (9),
the solution (7) is indeed an optimal solution to (5). This
completes the proof of Theorem 1. �

3933



Now, subject to the average optical power constraint, the
optimal space constellations have been successfully designed
for any IM/DD MIMO-OWC with any bit rates for the ML
detector using Theorem 1. To further appreciate the optimal
design, we would like to make the following three remarks:

1) Optimal High-Dimensional Space Constellation. Based
on our design criterion, designing the optimal space
signaling is essentially finding a high-dimensional space
constellation that maximizes the both the large scale
and small-scale diversity gains. It turns out that such an
optimal space constellation is actually the constellation
that allows each aperture to transmit different scaled
versions of the same point from an equally-spaced 2K-
ary unipolar pulse amplitude modulation (PAM) constel-
lation. Here, it should be emphasized that the optimal
space signaling is attained among all the space signaling
schemes. Hence, this optimality of our design is for all
space signaling in the sense of maximizing both the
small-scale and large-scale diversity gains.

2) Optimality of RS. As a spatial diversity transmission
scheme, RS is conjectured to be optimal in the sense of
error performance for IM/DD MIMO-OWC over log-
normal fading channels with equal variances. Despite
the fact that all the experimental evidences [9], [12],
thus far, have strongly demonstrated that this hypothesis
is indeed true, its rigorous mathematical proof remains
a long-standing open problem mainly due to the lack
of an explicit signal design criterion like MIMO RF
communications. Particularly when Ω1 = · · · = ΩN ,
Theorem 1 reveals that the corresponding optimal space
signaling is exactly RS. Hence, we actually solve this
long-standing open problem on the RS optimality in the
sense of optimizing both the large scale and small scale
diversity gains.

3) Knowledge of Channel Information From Transmitters.
From Theorem 1, we know that the optimal solution
requires that the transmitters only need the knowledge
of Ωn for n = 1, 2, · · · , N rather than each variance
σ2
ij , i = 1, · · · , M, j = 1, · · · , N itself.

V. NUMERICAL RESULTS

In this section, we examine the performance of the optimal
space signaling for an IM/DD MIMO-OWC system. The SNR
is defined by 1

σ2
n

with normalized average optical power.
All the schemes we would like to compare are described as
follows:

1) Repetition Signaling. RS [8], [9], [12]–[15] is the best
space signaling available in the literature for this appli-
cation, and the space signal vector of RS for M × N
IM/DD MIMO-OWC with K bits pcu is given by
xk = 2k

N(2K−1)
1N×1, where k ∈ {0, 1, · · · , 2K − 1}.

2) Optimal Space Signaling. This design is proposed in
Theorem 1 and the space signal vector is of the for-
m xk = 2k

Ω(2K−1)

[
Ω1, · · · , ΩN

]T
, where k ∈

{0, 1, · · · , 2K − 1}.
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Fig. 1. Average space signal vector (x) error rate comparison of optimal
space signaling (Opt) and RS with M = 1, N = 2 and K = 2.

It can be seen that the above two schemes have the same bit
rate, i.e., K bits pcu and normalized average optical power. To
make a fair comparison, we demodulate the above signalings
using ML demodulator. As illustrated in Fig. 1, we find that if
maxi 6=j,Ωi≥Ωj

Ωi
Ωj

becomes larger, then, the more SNR gain of
our optimal design over RS is attained. In addition, it can be
observed clearly that as SNR increases, the gap between two
error curves become larger and larger. This is, again, due to
the fact that the optimal space signaling provides larger small-
scale diversity gain than RS, and the small-scale diversity gain
governs the polynomial decaying speed of the error curves.
When Ω2

Ω1
= 0.3

0.001 = 300, as illustrated in Fig. 1, substantial
SNR gains can be observed. Specifically when looking at the
target codeword error rate of 10−5, we can see that our optimal
space signaling obtains about the 2.5 dB SNR gain over RS,
which will be expected to become larger if SNR is sufficiently
high.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we have considered the design of the optimal
space signaling that maximizes both the large-scale and small-
scale diversity gains for a general IM/DD MIMO-OWC system
over independent and non-identically log-normal distributed
fading channels. By establishing a novel geometrically weight-
ed inequality, we have attained closed-form optimal space
signaling. We have shown that the optimal space signaling is
RS with an optimal power allocation. Simulations have indicat-
ed that our optimal space signaling substantially outperforms
RS, which is the best signaling available in literature for this
application.
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