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ABSTRACT

Coordination among mobile agents relies on communication
over a wireless channel and can thus be improved by chan-
nel prediction. We present a Gaussian process framework to
learn channel parameters and predict the channel between ar-
bitrary transmitter and receiver locations. We explicitly in-
corporate location uncertainty in both learning and prediction
phases. Simulation results show that if location uncertainty is
not modeled appropriately, it has a degenerative effect on the
prediction quality.

Index Terms— Multi-agent network, channel prediction,
Gaussian processes, location uncertainty

1. INTRODUCTION

When performing a task, mobile agents need to be aware of
their own location and communicate with each other over the
wireless channel. Tasks can include formation control and
goal-seeking [1], which requires explicit communication and
connectivity maintenance. Prediction of channel gains can
improve connectivity and system performance [2]. The chan-
nel gain in a wireless channel comprises three main compo-
nents: deterministic path-loss, random shadowing, and ran-
dom small-scale fading [3]. Small-scale fading decorrelates
over distances on the order of a few centimeters (and will be
considered averaged out in this study), whereas shadowing
decorrelates over 50–100 m outdoors [3] and 1–5 m indoors
[4, 5], with well-established shadowing correlation models
[6, 7]. In this paper, we adapt the Gaussian process (GP)
model of [8] to incorporate uncertain location information at
both communicating endpoints. Our framework is able to deal
with channel measurements recorded at uncertain locations
and to incorporate this location uncertainty into the predic-
tive distribution of the wireless channel at a given (possibly
uncertain) test location.
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2. RELATION TO PRIORWORK

Modeling of multi-agent wireless channels was considered
in [9], where shadowing was modeled using a spatial loss
field, integrated along a line between transmitter and receiver.
Prediction of wireless channels between agents was studied
in [10, 11], where [10] proposed a GP framework, while [11]
investigated the impact of the underlying channel parameters
on the spatial channel prediction variance. A common as-
sumption in [9–11] was the presence of perfect location in-
formation. This assumption was partially removed in [12],
which extends [11] to quantify the effect of localization er-
rors on spatial channel prediction. For the case of a fixed
transmitter location, [8] explicitly accounted for location un-
certainty at the receiver, but not at the transmitter, using a GP
framework.

3. MODEL AND PROBLEM STATEMENT

3.1. Channel Model

We consider a TX and RX with locations qTX ∈ R
D and

qRX ∈ R
D, respectively, whereD is the dimensionality of the

space. The transmitted power is fixed to PTX. Assuming mea-
surements average out small-scale fading, either in time (mea-
surements taken over a time window) or frequency (measure-
ments represent average power over a large frequency band),
the received signal power in dBm can be expressed as [3]

PRX(qTX,qRX) = PTX + L0 (1)

− 10 η log10
‖qTX − qRX‖

d0
+Ψ(qTX,qRX),

where constant L0 captures antenna and other propagation
gains, d0 is a reference distance (here set to 1 m), η denotes
the path-loss exponent, and shadowing (in the dB domain) is
modeled through a zero-mean normal distribution with spatial
correlation [6, 13] and channel reciprocity (i.e., Ψ(qTX,qRX)
=Ψ(qRX,qTX)). For notational convenience, we will denote
the positions of a TX–RX pair by x = [qT

TX,q
T
RX]

T ∈ R
2D ,

allowing us to write PRX(x).
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3.2. Problem Statement

Based on the transmission from TX, RX obtains a noisy
measurement y=PRX(x)+n, where n ∼ Nn(0, σ

2
n). The

locations of both, TX and RX, are known only statisti-
cally, through the probability density functions (pdfs) p(qTX)
and p(qRX), which are assumed to be described by a finite
number of parameters u (e.g., means and covariances of
both agents’ locations). We assume that N measurements
y = [y1, y2, . . . , yN ]T have been collected at different TX
and RX positions. We denote the corresponding location
parameters U = [uT

1
,uT

2
, . . . ,uT

N ]T, wherein ui describes
the distribution of xi, i.e., the TX and RX pair of the i-th
measurement yi. We further consider a new location pair
distribution u∗ (e.g., a possible future location for a TX and
RX pair). We can now formulate the following problems:

(i) learn the parameters of the channel (say θ, to be specified
in the next section) from the database {U,y},

(ii) determine the predictive pdf p(PRX(u∗)|y,U,u∗; θ) =´
PRX(x∗|y,U,u∗; θ)p(x∗)dx∗.

4. CHANNEL PREDICTION

In the following, we adapt the GP framework of [8], called un-
certain GP (uGP), for learning and prediction of the wireless
channel considering TX and RX location uncertainty. The re-
ceived power at location pair x (described by its distribution
parameters u) is modeled as

PRX(u) ∼ GP (μ(u), k(u,u′)) . (2)

For the mean function we select

μ(u) = Ex,Ψ {PRX(x)} (3)

= PTX + L0 − 10 η log10 Ex

{
‖qTX − qRX‖

d0

}
, (4)

while a suitable choice for the covariance function is

k(u,u′) =

¨
c(x,x′)p(x)p(x′)dxdx′, (5)

in which c(x,x′) is a covariance function under perfect loca-
tion information. Here, x denotes the TX and RX locations
of one link, and x′ the TX and RX locations of another link.
Note that the choices (3)–(5) imply that for the case of no lo-
cation uncertainty, uGP reverts back to a classical GP (cGP)
approach, with classical mean and covariance functions [10].

4.1. Selection of Mean and Covariance Functions

We will assume that μ(u) can be expressed in closed form.1
For the covariance function, we first define c(x,x′). A rea-

1For instance, with d = ‖qTX − qRX‖, a polynomial expansion of
μ(d) = PTX + L0 − 10 η log10(d) combined with a Gaussian approx-
imation of p(d) can allow a closed-form expression of μ(u) [8].

x

y

qi,TX

qj,TX

dTX

qi,RX

qj,RX

dRX

Fig. 1. Illustration of TX and RX displacement between two
TX-RX pairs i and j in R

2. The TX displacement is dTX =
‖qi,TX − qj,TX‖ and the RX displacement is dRX = ‖qi,RX −
qj,RX‖.

sonable form of covariance function is [7]

c(x,x′) = σ2

Ψ exp

(
−
‖qTX − q′

TX‖
p

dpc

)
(6)

× exp

(
−
‖qRX − q′

RX‖
p

dpc

)
+ δ{x=x′}σ

2

proc,

where δP = 1whenP = true and 0 otherwise, p ≥ 1, σ2

Ψ
cap-

tures the variance of the shadowing process, σ2
proc models any

white noise not due to measurement noise (e.g., caused by
kernel mismatch), and dc is the decorrelation distance. The
first exponential in (6) corresponds to the TX displacement
between x and x′ and the second exponential to the RX dis-
placement.2 This is illustrated in Fig. 1. With p = 1 we have
the model of [7], and if either qTX = q′

TX or qRX = q′
RX, we

get the Gudmundsonmodel [6]. With p = 2, it can be verified
that when x and x′ are Gaussian random variables (so that u
and u′ describe the means and covariances of the two TX and
RX locations), k(u,u′) can be computed in closed form (see
also [15, App. C] and [16, Ch. 3.4]):

k(u,u′) = δ{u=u′}σ
2

proc + σ2

Ψ
|ΓTX|

−1/2 |ΓRX|
−1/2 (7)

exp

(
−

1

d2c
ΔT

TXΓ
−1

TXΔTX

)
exp

(
−

1

d2c
ΔT

RXΓ
−1

RXΔRX

)
,

where ΓRX = (I + d−2
c (ΣRX + Σ′

RX)(1 − δ{u=u′})), ΓTX =
(I + d−2

c (ΣTX + Σ′
TX)(1 − δ{u=u′})), ΔTX = zTX − z′TX,

and ΔRX = zRX − z′RX, in which ΣRX and Σ′
RX represent

the covariance of the location of the receiver of the first and
second link, respectively, and zRX − z′RX denotes the distance
between the means of the location distribution of the RX of
first and second link. Similar definitions hold for the TX. The
covariance function (7) explicitly includes the uncertainty of
the position of both the TX and RX of each link, so that highly
uncertain positions have reduced impact on the covariance.

Note that the definition of the covariance function now
accounts for the Gaussian nature of the shadowing as well as

2The kernel (6) is a product of two kernels each using a subvector of the
input vector. This results in a valid kernel giving a positive semi-definite
covariance matrix [14, Ch. 6.2].
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Fig. 2. Impact of average location error standard deviation λ (in meters) on the model hyper-parameter estimation for cGP and
uGP. The errorbars indicate one standard deviation. From left to right: estimated decorrelation distance dc, estimated shadow
standard deviation constant σΨ, estimated process standard deviation modeling the kernel mismatch σproc.

the spatial correlation, but it does not capture the reciprocity
of the channel.

4.2. Introducing Channel Reciprocity in uGP

With the definition of the input vector stated in uGP, an im-
plicit ordering has been introduced, which has the effect that
channel reciprocity is not ensured by the uGP framework it-
self. The incorporation of channel reciprocity into the uGP
framework can be done: (i) by applying an operator to the in-
put vector, (ii) by modifying the covariance function [10, Ch.
4.2], (iii) by extending the database by its reciprocal counter-
part. In this work, we have chosen the last approach, where
for every measurement yk with associated uk, we add its re-
ciprocal counterpart to the database (i.e., an additional entry
with the same value yk, but where the role of TX and RX in
uk are interchanged).

4.3. Learning

The uGP model hyper-parameter vector is given by θ =
[σn, σproc, dc, L0, η, σΨ]

T. Learning refers to estimating
the hyper-parameter vector θ from the training database
{U,y}. Since p(y|U, θ) = Ny(μ(U),K), with [K]ij =
k(ui,uj) + σ2

nδ{i=j}, a maximum likelihood estimator for θ
is

θ̂ = argmax
θ

log p(y|U, θ). (8)

In [15], it is stated that this likelihood function suffers from
many local maxima and a Bayesian estimator is recom-
mended instead. Nevertheless, in this work we estimate
the hyper-parameters using (8) similar to [8].

4.4. Prediction

Assume we are in the possession of a training database
{U,y} and hyper-parameter vector θ. For a test TX-RX
location pair parametrized by u∗ , the predictive pdf

p(PRX(u∗)|y,U,u∗; θ) follows a normal distribution with
mean and variance given by [14, Ch. 6.4], [17]

P̄RX(u∗) = μ(u∗) + kT

∗ K
−1(y − μ(U)), (9)

VarRX(u∗) = k∗∗ − kT

∗ K
−1k∗, (10)

where k∗ = [k(u1,u∗), k(u2,u∗), . . . , k(uN ,u∗)]
T com-

puted from (7), μ(U) = [μ(u1), μ(u2), . . . , μ(uN )]Tcomputed
from (3), and k∗∗ = k(u∗,u∗) + σ2

n.

5. NUMERICAL EXAMPLE

We present performance results for learning the hyper-
parameters and its impact on the prediction performance
for cGP and uGP under location uncertainty.

5.1. Setup

For convenience, we will ignore path-loss (so the field be-
comes zero-mean), and consider a field over a one-dimensional
(D = 1) space of 15 m length: PRX(x) : [0, 15]× [0, 15] →
R. The field is generated using a 2-dimensional GP with (6),
setting p = 1, dc = 3, σΨ = 10, and σn = 0.01. Reciprocity
is ensured by generating the field only for qTX ≥ qRX and
then copying the values for qTX < qRX.3 The field is sampled
with a resolution of 37.5 cm, leading to possible 40 TX and
RX locations, and thus a total of 1600 samples. The training
set contains N = 250 samples (including their reciprocal
copies) randomly drawn from these 1600 samples and per-
turbed by location uncertainty. Similar to [8], we consider
heterogeneous location errors with Σi = σ2

i I, where σi is
drawn from an exponential distribution with average location
error standard deviation λ. The hyper-parameter vector is
θ = [dc, σΨ, σproc]

T, where we assumed the agents know
σn. The cGP method uses the covariance function (6) with

3Note that this procedure is not possible forD > 1, as there is no absolute
ordering of positions. In practice, this is irrelevant, since the measurements
would be obtained from real data, which will inherently satisfy the reciprocity
condition.
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Fig. 3. Left: expected received power PRX,avg (in dBm) as a function of the expected position z∗ for one realization of the
spatially correlated shadowing field. Middle: reconstructed field using cGP method. Right: reconstructed field using uGP
method. Note that in all panels, the fields are symmetric along the diagonal (z∗,TX = z∗,RX), i.e., the channel is reciprocal.

p = 1 and uGP uses the expected covariance function (7).
Simulation results are averaged over 30 realizations of the
shadowing field.

5.2. Results

Learning: In Fig. 2, the impact of location uncertainty in
the training set (parametrized by λ) on the model hyper-
parameter estimation for cGP and uGP is demonstrated. For
cGP, we observe that the decorrelation distance dc increases
as λ increases. At the same time, σproc, which captures in-
put uncertainty, increases as well. As a consequence, σΨ

decreases as the signal variance needs to be maintained. It
is given by the relation σ2

Ψ
= σ2

tot − σ2
n − σ2

proc, where the
variance of the received signal power is estimated from mea-
surements y of the training set by σ2

tot = ‖y‖2/N . This
behavior can be observed in the middle panel of Fig. 2. In
the case of uGP, the estimated hyper-parameter dc stays al-
most constant among different levels of location uncertainty
in the training set. The uGP method exploits the fact that
location uncertainty of the i-th training sample xi is provided
by its distribution parameters ui. Hence, there is no need to
increase dc with increasing λ since the kernel function (7) di-
rectly works on ui in contrast to xi as is the case for cGP. The
hyper-parameter σproc captures the kernel mismatch between
kernel (6) used to generate the true field and the uGP-kernel
function (7). This mismatch is constant and independent of
λ and is reflected by the estimated values of σproc shown in
the right panel of Fig. 2. Furthermore, for a present location
uncertainty λ, a constant σproc implies also a constant σΨ.
This can be observed in the middle panel of the same figure.

Prediction: In Fig 3, we visualize the prediction perfor-
mance for the case that only the test set has uncertain lo-
cation information (with σ = 2), while training data had
λ = 0. The learned hyper-parameters can be extracted from
Fig. 2. Similar to [8], the performance must be assessed
with respect to the expected received power PRX,avg(u∗) =´
PRX(x∗)p(x∗)dx∗, where p(x∗) = Nx∗

(z∗, σ
2I) and the

mean value of x∗ can be written z∗ = [z∗,TX, z∗,RX]
T. In the

left panel of Fig. 3, we plot one realization of the average true
field PRX,avg for different mean locations of the transmitter
z∗,TX and receiver z∗,RX. Note the symmetry of the field
along its diagonal, due to channel reciprocity. The middle
and right panel in Fig. 3 illustrate the predicted mean P̄RX
using cGP and uGP, respectively. We observe that due to our
design, the channel reciprocity property holds. We clearly see
that uGP provides a much better estimate of the true expected
field than cGP. The predicted mean P̄RX using cGP varies
significantly with small variations of the TX and RX loca-
tion. In contrary to this, the predicted mean using uGP is a
smooth function over the TX and RX location. Due to space
limitations, we did not include results where both training
and test data were subject to uncertainty. However we expect
similar gains as in [8]. Finally, we expect that when the mean
function is included, the gains of uGP over cGP will be even
more pronounced.

6. CONCLUSIONS

We presented a framework to incorporate transmitter and re-
ceiver location uncertainty for channel gain prediction of a
spatially correlated shadowing field, which can be utilized by,
e.g., cooperating agents to enable end-to-end communication
connectivity. The proposed framework is based on Gaussian
processes, where the input variable is the location distribu-
tion of the agents, instead of the locations. This allows us to
explicitly account for varying levels of location uncertainty
during both training and testing. Simulation results indicate
improved performance when learning hyper-parameters and
predicting the received powers, as compared to methods that
neglect location uncertainty. For future work, we plan to sup-
port our findings by experiments using different types of radio
communication and positioning technologies and by includ-
ing this channel prediction framework in control applications.
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