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ABSTRACT

Unimodular sequences have been widely used in communica-
tions and radars, for which some numerical algorithms have
been proposed recently to obtain good autocorrelation prop-
erties [1, 2]. Design of such ”good” sequences, however, does
not take into account any prior information of the channel to
be estimated. Although shaping the autocorrelation of a train-
ing sequence may imply a good performance, it may be ad-
vantageous to directly optimize the performance measure of
interest. In this paper, we consider the problem of optimal
constant-modulus training sequence design for MMSE esti-
mation of the channel impulse response and conditional mu-
tual information maximization. Efficient iterative algorithms
based on the majorization-minorization framework are pro-
posed for each formulation. Numerical examples show that
our proposed training sequences achieve better performances
than that of low sidelobes or random phases.

Index Terms— Unimodular sequences, minimum mean
square error, conditional mutual information, majorization-
minorization.

1. INTRODUCTION

In this paper we consider the problem of constant-modulus
training sequence design with prior information incorporated.
As a special case, the unimodular sequence has been exten-
sively studied in the literature; see [1] and many references
therein. It finds a lot of applications ranging from wireless
communications to radars. For instance, the digital modula-
tion techniques like phase-shift keying requires the transmit-
ted symbols to be of constant modulus to satisfy the practical
hardware system constraints of RF amplifiers and A/D con-
verters [3].

Recently, some studies have been conducted to construct
unimodular sequences of good autocorrelation properties
via numerical optimizations; the obtained sequences share
impulse-like autocorrelation characteristics. With appropri-
ately chosen metrics, the sequence design problem can be
well formulated and then solved by effective optimization
techniques. In [1], several cyclic algorithms are proposed for
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either minimizing integrated sidelobe level (ISL) or maxi-
mizing ISL-related metric called merit factor (MF). Another
work [2] further proposes computationally efficient algo-
rithms for the minimization of ISL, and it is demonstrated
that the proposed algorithms result in lower autocorrelation
sidelobes with less computational complexity.

For channel estimation, sequences of such good autocor-
relation properties are desirable only in the ideal and limited
situation where no priors of channel impulse response are
considered and channel noise is white; thus, a matched fil-
ter is employed for post-processing. On the other hand,
minimum mean square error (MMSE) estimation and con-
ditional mutual information (CMI) maximization have been
widely adopted as criteria of optimal training design for
frequency-selective channels [4] and MIMO channels [5],
to name a few. With commonly available channel statistics,
we model the optimal constant-modulus sequence design
problem with respect to MMSE and CMI, respectively. Both
formulated problems, however, are non-convex especially
with the hard constant-modulus constraint, and even more
difficult to solve if without restricting prior channel covari-
ance to some amenable structures. To tackle those issues, we
resort to the majorization-minorization (MM) technique [6]
to solve the original problem by a series of simpler problems,
each of which turns out to have a closed-form solution. An
iterative algorithm is thus obtained and will converge to a sta-
tionary point. We compare our proposed training sequences
with those of low sidelobes or random phases with respect
to MSE and CMI. The accelerated algorithms of better con-
vergence properties are also provided with numerical results
demonstrated.

2. PROBLEM FORMULATIONS

We consider a quasistatic single-input single-output LTI chan-
nel with impulse response h = [h0, . . . , hK ]

T ∈ Ck+1 of
order K, which follows a circularly complex Gaussian dis-
tribution h ∼ CN (h0,R0). A length-N constant-modulus
training sequence u = [u1, . . . , uN ]

T ∈ U is to be trans-
mitted for MMSE channel estimation or CMI maximization,
where U =

{
u
∣∣|un| =

√
α
N , n = 1 . . . , N

}
with power con-

straint ∥u∥2 = α. Assuming an additive noise v with v ∼
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CN (0,W), the received sequence is then given by

yn =
K∑

k=0

hkun−k + vn, (1)

for n = 1, . . . , N + K, where un−k = 0 for n − k ≤ 0 or
n − k > N . This input-output relationship can be written in
a matrix form as

y = Sh+ v, (2)

where S ∈ C(N+K)×(K+1) is a Toeplitz convolution ma-
trix with [u1, . . . , uN , 0 . . . , 0]

T as the first column, and is
denoted by S = T (u).

2.1. Optimal Sequence Design by Minimizing MMSE
Criterion

Given the linear channel model (2), the MMSE estimator of
the channel impulse response is

ĥ = R0S
H
(
SR0S

H +W
)−1

(y − Sh0) + h0, (3)

with the error covariance matrix

R =
(
R−1

0 + SHW−1S
)−1

= R0 −R0S
H
(
SR0S

H +W
)−1

SR0,
(4)

where the second equality is by matrix inversion lemma. In
this case, the MMSE estimator is also a MAP estimator with
conditional distribution h |y,S ∼ CN

(
ĥ,R

)
. The MMSE

given S is thus

MMSE (S) = Tr
((

R−1
0 + SHW−1S

)−1
)
. (5)

The optimal constant-modulus sequence for MMSE mini-
mization can be obtained by solving the problem

minimize
u,S

MMSE (S) subject to S = T (u) ,u ∈ U .
(6)

2.2. Optimal Sequence Design by Maximizing CMI Cri-
terion

Conditional mutual information (CMI) has been used as a cri-
terion in training sequence design problem, e.g., [5], defined
as

CMI (S) = I (h;y |S )
= H (h)−H (h |y,S )
= 1

2 log det
(
R0R

−1
)
.

(7)

where H (·) is the differential entropy of a distribution [7].
Naturally, the optimal sequence design problem can be for-
mulated by maximizing the CMI as

maximize
u,S

CMI (S) subject to S = T (u) ,u ∈ U .
(8)

3. ALGORITHMS FOR OPTIMAL SEQUENCE
DESIGN

Actually there are a lot of works dealing with the same ob-
jectives as that of (6) and (8) in regard to S with only power
constraint imposed. Assuming various special structures for
the prior channel covariance matrix, the problems are refor-
mulated as power allocation using the majorization theory
and the waterfilling solutions are obtained [8, 5]. For our
problems, however, the difficulty lies not only in the struc-
ture constraint on matrix S (Toeplitz in this case), but also the
bothersome modulus constraint. In addition, it is preferable
to avoid those particular structure assumptions on the chan-
nel covariance matrix when seeking the solutions, as it finds
wider applicability in various channel environments.

To develop efficient algorithms to solve the problems (6)
and (8), we refer to the majorization-minorization (MM)
framework [6] that has been shown to give a stationary so-
lution with monotonic convergence. Instead of approach-
ing the original problems, a series of problems are solved,
each of which is indexed by t hereafter. Let us intro-
duce Σ = SR0S

H + W. According to equation (4),
we have an equivalent form for error covariance matrix
R = R0 − R0S

HΣ−1SR0, and Tr (R) is a quadratic-
over-linear function. Then MMSE (S) is jointly concave in
S and Σ [9]. Since a concave function can be majorized by
its first order Taylor expansion, we have

MMSE (S) ≤ const + Tr
((

A(t)
)H

SR0S
HA(t)

)
−2Re

{
Tr
(
R0

(
A(t)

)H
S
)}

,

(9)

where A(t) =
(
Σ(t)

)−1

S(t)R0, and S(t) = T
(
u(t)

)
. Fol-

lowing the MM framework, the MMSE minimization prob-
lem can be solved by a series of problems with (9) as objective
functions.

In order to solve the maximization problem (8), we need
to minorize the objective function (7). Observe that R =
R0−R0S

HΣ−1SR0 is a concave matrix fractional function
over the positive semidefinite cone, on which − log det (·)
is convex and decreasing. Therefore, CMI (S) is convex in
{S,Σ}, and thus can be minorized by its first order Taylor
expansion

CMI (S) ≥ − 1
2

(
Tr
((

R(t)
)−1 (

A(t)
)H

SR0S
HA(t)

)
−2Re

{
Tr
(
R0

(
R(t)

)−1 (
A(t)

)H
S
)})

+ const,

(10)
where

(
R(t)

)−1
= R−1

0 +
(
S(t)

)H
W−1S(t) by (4), and a se-

ries of maximization problems are obtained with the objective
(10).

Ignoring the constants, the objectives (9) and (10) share
a similar form. And by reversing the sign of the objectives
(10), both problems fall into a series of minimization prob-
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lems each with the objective function

g
(
S;S(t),V(t)

)
= Tr

(
V(t)

(
A(t)

)H
SR0S

HA(t)
)

−2Re
{

Tr
(
R0V

(t)
(
A(t)

)H
S
)}
(11)

and then we arrive at the following problems

minimize
u,S

g
(
S;S(t),V(t)

)
subject to S = T (u) ,u ∈ U ,

(12)

where V(t) = IK+1 for MMSE minimization problem and
V(t) =

(
R(t)

)−1
for CMI maximization problem. Notice

that the function (11) is quadratic in S , with

Tr
(
V(t)

(
A(t)

)H
SR0S

HA(t)
)

= vecH (S)
(
RT

0 ⊗A(t)V(t)
(
A(t)

)H)
vec (S)

= xHH(t)x,

(13)

in which x = vec (S) and H(t) = RT
0 ⊗A(t)V(t)

(
A(t)

)H ≽
0 . Given any constant λ(t) ≥ λmax

(
H(t)

)
, we have the

following inequality

xHH(t)x ≤ −2Re
{
xH
(
λ(t)I−H(t)

)
x(t)

}
= +2λ(t) ∥x∥2 −

(
x(t)

)H
H(t)x(t).

(14)

Considering the constraint in (12) with ∥x∥2 = (K + 1)α a
constant, the following majorization can be applied

g
(
S;S(t),V(t)

)
≤ −2Re

{
vecH (S)

(
λ(t)I−H(t)

)
vec
(
S(t)

)}
−2Re

{
Tr
(
R0V

(t)
(
A(t)

)H
S
)}

= −2Re
{
Tr
((

λ(t)S(t) −A(t)V(t)
(
A(t)

)H
S(t)R0

+A(t)V(t)R0

)H
S
)}

.

(15)
Let B

(
S(t),V(t)

)
= λ(t)S(t)−A(t)V(t)

(
A(t)

)H
S(t)R0 +

A(t)V(t)R0 . Due to the structure constraint S = T (u) in
(12), the following problems are obtained

minimize
u,S

Re

Tr

( ∑
i=1,...,K+1

Bi

(
S(t),V(t)

))H

S


subject to |un| =

√
α
N , n = 1 . . . , N

(16)
where Bi

(
S(t),V(t)

)
is a vector consisting of column i

and rows {i, . . . , i+N − 1} of B
(
S(t),V(t)

)
, for i =

1, . . . ,K + 1 . It is obvious that the solution to the above
optimization problem is simply

u(t+1) =

√
α

N
ej arg(

∑
i=1,...,K+1 Bi(S(t),V(t))), (17)

by projection onto the circle on the complex plane, where
arg (·) is taken in an element-wise way. As an option, we
choose λ(t) = Tr

(
H(t)

)
, and the algorithm is summarized in

Algorithm 1.

Algorithm 1 Optimal constant-modulus sequence design.

1: Set t = 0, and |un| =
√

α
N , n = 1 . . . , N .

2: repeat:
3: S(t) = T

(
u(t)

)
4: A(t) =

(
S(t)R0

(
S(t)

)H
+W

)−1

S(t)R0

5: V(t) = IK+1 for MMSE minimization problem and
V(t) = R−1

0 +
(
S(t)

)H
W−1S(t) for CMI maximization

problem
6: λ(t) = Tr (R0)Tr

(
A(t)V(t)

(
A(t)

)H)
7: B

(
S(t),V(t)

)
= λ(t)S(t)−A(t)V(t)

(
A(t)

)H
S(t)R0+

A(t)V(t)R0

8: u(t+1) =
√

α
N ej arg(

∑
i=1,...,K+1 Bi(S(t),V(t)))

9: t← t+ 1
10: until convergence

3.1. Acceleration via SQUAREM

When developing the Alg. 1, majorization or minorization
have been applied twice on the original objective functions,
which results in the slow convergence of the update. To
accelerate the computational procedures, the easy-to-use
SQUAREM method [10] is employed, without the loss of the
mototonic convergence property of the MM framework. For
simplicty, we will consider the case for MMSE estimation,
and it is easy to be extended to the CMI maximization as
well. We call the steps 1 to 8 in Alg. 1 one MM update,
denoted by MMupdate

(
u(t)

)
given the current iterate u(t) .

The accelerated scheme is described in the Alg. 2.

Algorithm 2 Accelerated scheme for optimal constant-
modulus sequence design for MMSE estimation.

1: Set t = 0, and |un| =
√

α
N , n = 1 . . . , N .

2: repeat:
3: u1 = MMupdate

(
u(t)

)
4: u2 = MMupdate (u1)
5: r = u1 − u(t)

6: v = u2 − u1 − r
7: Step length α = − ∥r∥

∥v∥

8: u =
√

α
N ej arg(u

(t)−2αr+α2v)

9: Back-tracking: α ← α−1
2 when MMSE (S) >

MMSE
(
S(t)

)
: u =

√
α
N ej arg(u

(t)−2αr+α2v)

10: u(t+1) = u
11: t← t+ 1
12: until convergence

4. NUMERICAL RESULTS

Numerical results are presented in this section and we will
show that by considering the prior information in design-
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ing the training sequences, the MMSE estimate and CMI
both outperform the random and low-ISL training sequences.
For that purpose we compare our training sequences with
unimodular sequences obtained by CAN [1] and MISL
[2]. We choose channel coefficients h ∼ CN (0K+1,R0)

with K = 15 , and (R0)i,j = 0.9|i−j|0.9
i−1
2 0.9

j−1
2 for

i, j = 1, . . . ,K+1. The channel is thus correlated with expo-
nentially decreasing power in time delay, which corresponds
to the correlated scattering environment with multipath fad-
ing in wireless communications [11]. The channel noise
is set to be v ∼ CN (0N+K ,W) with (W)i,j = 0.2|i−j|

for i, j = 1, . . . , N + K. Then the MSE of the chan-
nel estimator is MSE(ĥ) = ∥ĥ − h∥22, and CMI (S) =
1
2 log det

(
I+R0S

HW−1S
)
. The signal-to-noise ratio

(SNR) is defined as

SNR = 10 log10
∥u∥2 /N

Tr (W) /(N +K)
(dB) . (18)

For different values of SNR, we run 200 times Monte Carlo
simulations and the resulting MSE and CMI are averaged.

Figs. 1 and 2 show respectively the averaged MSE and
CMI with different training sequences as SNR increases from
-5 dB to 10 dB. First, we can see that our proposed training
sequences obtained by Alg. 1 and its accelerated algorithm,
e.g., MMSE-optimal and MMSE-optimal accel. in MMSE
estimation, achieves almost the same performance, and also
improves upon low-ISL sequences and sequences of random
phases. Fig. 3 demonstrates the convergence rates of Alg. 1
and its accelerations for both MMSE minimization and CMI
maximization with SNR = 0 dB. It can be seen that the ac-
celerated algorithms converge very fast.
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Fig. 1. Averaged MSE of channel estimators for different
constant-modulus training sequences.
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Fig. 2. Averaged CMI for different constant-modulus training
sequences.
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Fig. 3. Convergences of proposed algorithms for different
criteria, SNR = 0 dB.

5. CONCLUSION

In this paper the optimization of constant-modulus train-
ing sequence for channel estimation is studied. We have
formulated the problem for MMSE minimization and CMI
maximization and then efficient algorithms based on the
majorization-minorization framework have been proposed.
The numerical results are also provided showing the advan-
tages of incorporation of prior knowledge into the design of
training sequences.
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