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ABSTRACT

Sequences with low aperiodic autocorrelation sidelobes are well-
known to have extensive applications in active sensing and com-
munication systems. In this paper, we consider the sequence de-
sign problem of minimizing the £,-norm of the autocorrelation side-
lobes, which can then be used to minimize the peak sidelobe level
(PSL) criterion. An algorithm based on the general majorization-
minimization method is developed to tackle the problem. The pro-
posed algorithm can be implemented by means of fast Fourier trans-
form (FFT) operations and thus is computationally efficient in prac-
tice. Numerical experiments show that the proposed algorithm can
produce very long sequences with impulse-like autocorrelation and
with much smaller PSL compared with some well-known analytical
sequences.

Index Terms— Autocorrelation, majorization-minimization, peak
sidelobe level, unimodular sequences.

1. INTRODUCTION

Sequences with good autocorrelation properties lie at the heart of
many active sensing and communication systems. Important appli-
cations include synchronization of digital communication systems
(e.g., GPS receivers or CDMA cellular systems), pilot sequences
for channel estimation, coded sonar and radar systems, and even
cryptography for secure systems [1-5]. In practice, due to the lim-
itations of sequence generation hardware components (such as the
maximum signal amplitude clip of analog-to-digital converters and
power amplifiers), unimodular sequences are of special interest be-
cause of their maximum energy efficiency [5].

Let {x,}_; denote a complex unimodular sequence of length
N, then the aperiodic autocorrelations of {xn}le are defined as

N—k
Th= Y TnTnpk =11, k=0,...,N—1. )
n=1

The problem of sequence design for good autocorrelation properties
usually arises when small autocorrelation sidelobes (i.e., k # 0) are
required. To measure the goodness of the autocorrelation property
of a sequence, a commonly used metric is the peak sidelobe level
(PSL)

PSL = max{|r|} ey - (2)

Owing to the practical importance of sequences with low auto-
correlation sidelobes, a lot of effort has been devoted to identify-
ing such sequences. Binary Barker sequences, with their peak side-
lobe level (PSL) no greater than 1, are perhaps the most well-known
such sequences [6]. However, it is generally accepted that they do
not exist for lengths greater than 13. In 1965, Golomb and Scholtz
[7] started to investigate more general sequences called generalized
Barker sequences, which obey the same PSL maximum, but may
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have complex (polyphase) elements. Since then, a lot of work has
been done to extend the list of polyphase Barker sequences [8-10],
and the longest one ever found is of length 77. It is still unknown
whether there exist longer polyphase Barker sequences. Apart from
searching for longer polyphase Barker sequences, some families of
polyphase sequences with good autocorrelation properties that can
be constructed in closed-form have also been proposed in the litera-
ture, such as the Frank sequences [11], the Chu sequences [12], and
the Golomb sequences [13].

In this paper, we develop an efficient optimization algorithm to
minimize the ¢,-norm of the autocorrelation sidelobes, which can
be used to design sequences with low PSL metric. The proposed al-
gorithm is derived based on the general majorization-minimization
(MM) method and can be implemented by means of FFT operations.
Numerical experiments show that the proposed algorithm can gener-
ate long sequences with very low PSL.

Notation: Re(-) and Im(-) denote the real and imaginary part,
respectively. arg(-) denotes the phase of a complex number. The
superscripts (-)7, (-)* and (-)* denote transpose, complex conju-
gate, and conjugate transpose, respectively. o denotes the Hadamard
product. z; denotes the i-th element of vector x. X;.; x.; denotes
the submatrix of X from X to X;;. Tr(-) denotes the trace of a
matrix. vec(X) is a column vector consisting of all the columns of
X stacked. I,, denotes an n X n identity matrix.

2. PROBLEM FORMULATION

Let {x,} _; denote the complex unimodular sequence to be de-
signed and {ry}~ " be the aperiodic autocorrelations of {x, }h—;
as defined in (1). In this paper, we consider the general ¢,-norm
metric of the autocorrelation sidelobes defined as

N-1 1/p
(Z |rk|P> 3)
k=1

with 2 < p < oo. The motivation is that by choosing different p val-
ues, we may get different metrics of particular interest. Especially,
by choosing p — 400, the £,-norm metric tends to the {~.-norm of
the autocorrelation sidelobes, which is known as the PSL. Then the
problem of interest is the following £,-norm (2 < p < 0o) metric
minimization problem:

N-1 1/p
minimize <;|rk| ) @)
subjectto |z,|=1,n=1,...,N,

which is equivalent to

N-1
minimize rE|P

imize > Ir )
subjectto |z,|=1,n=1,...,N.

If we choose p = 2, problem (5) reduces to the integrated sidelobe
level (ISL) minimization problem considered in [14, 15].
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3. PSL MINIMIZATION VIA
MAJORIZATION-MINIMIZATION

The majorization-minimization (MM) method is an iterative approach
to solve optimization problems that are too difficult to solve directly.
Interested readers may refer to [16] and references therein for more
details.

Let f(x) denote the objective function of the problem (5) and
X € C™ be the constraint set. Instead of minimizing f(x) directly,
the MM approach optimizes a sequence of approximate objective
functions that majorize f(x). Formally, a function u(x, x")) is said
to majorize the function f(x) at the point x® over X provided

( x> f(x), vxeQ, (6)
ux,x") = fxY). )

In other words, the majorization function u(x, x(l)) is an upper bound
of f(x) over X and coincides with f(x) at xV).

To tackle the problem (5) via majorization-minimization, we
need to construct a majorization function of the objective and the
idea is to first majorize each |rg|?, k = 1,..., N — 1 by a quadratic
function of |r| locally based on the following lemma [17].

Lemma 1. Let f(x) = 2P withp > 2 and x € [0, t]. Then for any
given xo € [0,t), f(z) is majorized at xo over the interval [0,t] by
the following quadratic function:

az® + (pxh ' = 2axo)x + axg — (p — 1)k, (8)
where .
a:tpfngpxg (t — o) ©)
C—wP

Given ‘r](f)‘ at iteration [, according to Lemma 1, we know that

|rk|P (p > 2) is majorized at ’ ’ over [0, t] by
P
arlral? + be sl + an [ri?] nlof a0
where
-1
tP — )rk p‘r](f) ! (t— ’T,(j)‘)
a ; ) an
(=[]
-1
by = T oa )r;“\. (12)

Since the objective decreases at every iteration in the MM frame-
work, it is sufficient to majorize |ry|? over the set on which the

objective is smaller than the current objective, i.e., ZkN:_ll Iril? <

1
(l)| ) ? . Hence we

which implies |rx| < ( )t

k 1 Tk
1
can choose t = ( oy ) ”)’ ) ? in (11). Then the majorized
problem of (5) is given by (ignoring the constant terms)
N-1
minimize Z (ak|rk|2 + by |1“k|) (13)
n k:l
subjectto |z,|=1,n=1,...,N.

Letusdefine Uy, k =1—N,...,, N—1tobe N x N Toeplitz
matrices with the kth diagonal elements being 1 and O elsewhere,
ie.,

1 ifj—i=k
[Uk]i,j = {0

j=1,...,N.
ifj—ikk 7T

(14)

Noticing that
re=x"Upx = Tr(Upxx™), k=1—-N,...,N—1, (15)
we can rewrite the objective of problem (13) as follows:
N-1 5
3 ( Tr(kaxH)‘ + by |rk|>
k=1
;N 9
=35 Z ( lvec xxH)Hvec(Uk)‘ + by |r1€|)
k=1—-N
—lvec(xxH) Lvec(xx" 1 Z bi |7k (16)
=5 2 k|Tk
k=1—N
where a_r = ag, bfk = bk, apg = bo =0 and
N-1
L= arvec(Uy)vec(Uy )" (17)
k=1—N

It has been shown that the maximum eigenvalue of L can be com-
puted in closed form as follows [17]:

Amax(L) = mgx{ak(N —k)k=1,...,N —1}.
Then we can further majorize the first term of the objective based on
the following simple result [15].

(18)

Lemma 2. Let L be an n X n Hermitian matrix and M be another
n X n Hermitian matrix such that M — L > 0. Then for any point
xo € C", the quadratic function X Lx is majorized by x" Mx +
2Re (xH (L — M)xo) + xg)i(M — L)xo at xo.

By choosing M = Apax(L)I in Lemma 2, we know that the
first term in (16) is majorized by the following function at x®:

u (x, x)
= %)\max(L)vec(xxH)Hvec(xxH)

+ Re(vec(xxH)H(L — )\max(L)I)vec(x<l)X(l)H)) 1

+ %vec(x(“x(l)H)H()\maX(L)I — L)vec(xWxOH),
which can be simplified as

" (R — Amax (L)x" (X(l))H) X + const, (20)

where R = Z akr%Uk and const is some constant that does
not depend oflz;zh]ére we use the fact that |z,| =1, n =1,..., N).

For the second term, since it can be shown that b, < 0, we have

1 N-1 1 N-1 MO
* Tk
3 > bl < 3 > biRe rk‘ (l)| (21)
k=1—-N k=1—-N Tk
] Mot O
= beRe  xTU_jx—E— % (22)
2 ’ (z)‘
k=1—N Tk
N-1 0!
1
1 b T’;l) U_, | x. 23
k=1—-N ’Tk
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By adding the two majorization functions, i.e., (20) and (23), and
defining

by —2
W—f = Wk = af + ’(l)‘ 7k:17 '7N_1a
24
we have the majorized problem of (13) given by
minimize  x% (R — /\max(L)x(l)(x(l))H) b 25)
subjectto |zn|=1,n=1,...,N,

where R = Z Wk TQLU;@ is a Hermitian Toeplitz matrix.
k=1-N

It is clear that the objective function in (25) is quadratic in x, but
problem (25) is still hard to solve directly. So we propose to majorize
the objective function of problem (25) based on Lemma 2 again to
further simplify the problem. This time we need the following re-
sult regarding the bound of the extreme eigenvalue of a Hermitian
Toeplitz matrix [18].

Lemma 3. Let T be an N x N Hermitian Toeplitz matrix defined

by {tk}ivz_ol as follows
to t1 th_,
T = tl t()
t
tN—1 e t1 tO
and F be a 2N x 2N FFT matrix with Fp, ,, = ™7 N0 <
m,n < 2N. Letc = [to,t1, "+ ,tN—1,0,tN_1," " 7t1]T nd
p = Fc be the discrete Fourier transform of c. Then
Amax(T) < . m + ma; (26)
max - i X i ,
= g WK T B Mt

Since the matrix R is Hermitian Toeplitz, according to Lemma
3, we know that

~ 1
Amax (R) <= ( max fizi + Max fizi- 1) (27

— 2 \1<i<N 1<i<
where p = Fc and

c=10, wlrgl), . ,wN_1r§\l,)7l,O,wN_1r§llN, e, W T(l> .
(28)
Let us denote the right hand side of (27) by A, it is easy to see that

Au > Amax (R) > Amax (R — Amax (L)x® (xO)H ) . (29

Thus, we may choose M = A\, I in Lemma 2 and perform one more
majorization step, and finally get the majorized problem

minimize  —Re(y"x)
x (30)
subjectto |z,|=1,n=1,...,N,
where ~
Y = Amax (L)N + A,) x — Rx®. (31)

It is easy to see that problem (30) has a closed form solution, which
is given by
jarg(yn)

Ty =€ ,n=1,...,N. 32)

Now we can summarize the overall algorithm and it is given in Al-
gorithm 1. Note that, to avoid numerical issue, we have used the
normalized aj and wy, (i.e., divided by ¢*) in Algorithm 1, which
is equivalent to divide the objective in (13) by t” during the deriva-
tion. Also note that since R is Hermitian Toeplitz, the matrix vector
multiplication Rx™ has been implemented in terms of FFT opera-
tions [17].

Algorithm 1 Monotonic minimizer for the £,-metric of autocorrela-
tion sidelobes (p > 2).

Require: sequence length N, parameter p > 2
1: Setl = 0, initialize x*
2: repeat
3 f=FxOT,
4:
5

o (sl yor
(Ll

_ no-n(al)

= =1,...,.N—1

6 @k (t— |T‘k+1|)2 7]{: ’ ’
7 owe= (el i N
8  Ap =maxp{ar(N —k)k=1,...,N -1}
* c=ro0,w,...,wN= 1,0wN Tyens wl]
* pn=Fc
% -1

M= 2 (mae + mae)
% y:X(z>_ FI n (pof)

IN(AL N+Ag)
I+1 i
% ) — giarg(yn)

I+1+1
9: until convergence

,n=1,...,N

4. NUMERICAL EXPERIMENTS

In this section, we present numerical results on applying the pro-
posed algorithm to design unimodular sequences with low PSL. The
acceleration scheme described in [17] (Algorithm 3) was applied
in our implementation of the algorithm. All experiments were per-
formed on a PC with a 3.20 GHz i5-3470 CPU and 8 GB RAM.

To apply the algorithm, we need to choose the parameter p.
To examine the effect of the parameter p, we first apply the algo-
rithm (denoted as MM-PSL) with four different p values, i.e., p =
10, 100, 1000 and 10000, to design a sequence of length N = 400.
Frank sequences [11] are used to initialize the algorithm, which are
known to be sequences with good autocorrelation. More specifically,
Frank sequences are defined for lengths that are perfect squares and
the Frank sequence of length N = M? is given by

Taniansr = 2THM o k=01,....,M—1.  (33)

For all p values, we stop the algorithm after 5 x 10* iterations and the
evolution curves of the PSL are shown in Fig. (1). From the figure,
we can see that smaller p values lead to faster convergence. How-
ever, if p is too small, it may not decrease the PSL at a later stage,
as we can see that p = 100 finally gives smaller PSL compared with
p = 10. It may be explained by the fact that £,,-norm with larger p
values approximates the /~-norm better. So in practice, gradually
increasing the p value is probably a better approach.

In the second experiment, we consider both an increasing scheme
of p (MM-PSL-adaptive) and the fixed p scheme with p = 100.
For the increasing scheme, we apply the MM-PSL algorithm with
increasing p values 2,22, ...,2"3. For each p value, the stopping

criterion was chosen to be |obj(x+1)) — obj (x(l))’ Jobj(x®) <
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Fig. 1. The evolution curves of the peak sidelobe level (PSL).

107% /p, with obj(x) being the objective in (4), and the maximum
allowed number of iterations was set to be 5 x 103, For p = 2,
the algorithm is initialized by the Frank sequence and for larger
p values, it is initialized by the solution obtained at the previous
p. For the fixed p scheme, the stopping criterion was chosen to be

obj(x"*1) — obj(x)| Jobj(x) < 107'°, and the maximum

allowed number of iterations was 2 x 10°. In this case, in addition to
the Frank sequence, the Golomb sequence [13] was also used as the
initial sequence, which is also known for its good autocorrelation
properties. In contrast to Frank sequences, Golomb sequences are
defined for any positive integer and a Golomb sequence {x, }5:1 of
length N is given by

a:n:ejﬂ"*l)"/N,n:l,...,N. (34)

The two schemes are applied to design sequences of the fol-
lowing lengths: N = 52, 72,102, 202, 302, 502, 70%, 1002, and the
PSL’s of the resulting sequences are shown in Fig. 2. From the
figure, we can see that for all lengths, the MM-PSL(G) and MM-
PSL(F) sequences give nearly the same PSL; both are much smaller
than the PSL of Golomb and Frank sequences, while a bit larger
than the PSL of MM-PSL-adaptive sequences. For example, when
N = 104, the PSL values of the MM-PSL(F) and MM-PSL-adaptive
sequences are 4.36 and 3.48, while the PSL values of Golomb and
Frank sequences are 48.03 and 31.84, respectively. The correlation
level of the Golomb, Frank and the MM-PSL-adaptive sequences are
shown in Fig. 3. We can notice that the autocorrelation sidelobes of
the Golomb and Frank sequences are relatively large for k close to
0 and N — 1, while the MM-PSL-adaptive sequence has much more
uniform autocorrelation sidelobes across all lags.

5. CONCLUSION

We have developed an efficient algorithm for the design of unimodu-
lar sequences with low PSL metric based on the general MM method.
The proposed algorithm is derived via applying three successive ma-
jorization steps. It can be implemented by means of FFT operations
and thus is computationally very efficient in practice. It has been
shown by numerical examples that the proposed algorithm can pro-
duce long sequences with much more uniform autocorrelation side-
lobes and much smaller PSL compared with Frank and Golomb se-
quences, which are known for their good autocorrelation properties.

10 T T
—©— Golomb
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—&8— MM-PSL (G)
—%— MM-PSL (F)
—<&— MM-PSL-adaptive|
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Peak Sidelobe Level (PSL)

10 1 U ! 2 ! 3 4
10 10 10 10

sequence length N

Fig. 2. Peak sidelobe level (PSL) versus sequence length. MM-
PSL(G) and MM-PSL(F) denote the MM-PSL algorithm initialized
by Golomb and Frank sequences, respectively.
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Fig. 3. Correlation level of the Golomb, Frank and MM-PSL-
adaptive sequences of length N = 10*.
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