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ABSTRACT
This work addresses the fundamental issue of online chan-
nel learning in indoor localization systems. We describe a
novel algorithm for unsupervised channel learning where the
path loss exponent in the Non-Line-Of-Sight (NLOS) region
is adapted online while positioning.The algorithm has scal-
able complexity and is shown to provide significant improve-
ment over non-adaptive systems.

Index Terms— Indoor localization; WLAN; MMSE;
RSS; indoor channel model; EM algorithm; channel estima-
tion.

1. INTRODUCTION

Most proposals of indoor localization systems use the re-
ceived signal strength (RSS) measurements from multiple
access points (AP) because of its relatively low-cost hard-
ware requirement [1, 2, 3]. In WLAN-based positioning, the
indoor channel is mostly NLOS except at distances close to
the access points. A fundamental problem in these systems
is characterizing the wireless channel between the reference
points and the receiver so as to properly map the RSS to dis-
tance. Most indoor positioning systems use the log-normal
shadowing model [4, 5] in which the RSS (in dBm) is propor-
tional to the logarithm of the distance between the transmitter
and the receiver. We adopt the more general two-region
log-normal shadowing model [6], that describes a piecewise
linear relation between the RSS (in dBm) and the distance.
The model uses two different deterministic values for the
path-loss exponent in the LOS and the NLOS regions. We
further generalize the model by treating the NLOS path loss
exponent as a random variable with a normal distribution
whose mean is dependent on the indoor environment.

The main contribution of this work is developing an algo-
rithm for online adaptation of the NLOS path loss exponent.
It is an unsupervised procedure that uses the positioning es-
timate from the Minimum Mean-Square Error (MMSE) po-
sition estimator to adapt the channel model to the observed
RSS measurements. The adaptation algorithm has an EM-like
structure, where we alternate between estimating the position
and estimating the mean of path loss exponent. It uses the
positioning estimates over a large time window to reduce the
impact of spurious positioning errors.

Many earlier RSS-based positioning systems, e.g., [7, 8],
assumed perfect knowledge of the indoor channel. This as-
sumption is justified if the system is used in a fixed and con-
trolled environment, but cannot be extended to a general solu-
tion. In some other systems, e.g. [9], explicit estimation of the
path loss exponent is avoided by searching over its admissible
range for the best grid point. Explicit online estimation of the
path loss exponent has been proposed in some earlier works,
e.g., [10, 11, 12]. In some cases, e.g., [10, 11], it is assumed
that all channels have the same path loss exponent over a pe-
riod of time. This simplifies the problem to a joint estimation
problem that is solved by nonlinear least square techniques.
In [12], the path loss exponents are treated as unknown deter-
ministic variables and are estimated from the RSS measure-
ment using measures of compatibility of the distances esti-
mates. This results in a nonlinear least square problem with
the a search space whose size is proportional to the number of
AP’s. The proposed channel learning algorithm differs from
prior art in the following aspects:

1. The path loss exponent in the NLOS region is treated
as a random variable, and different channels can have
different path loss exponents.

2. The procedure does not need offline calibration and the
channel adaptation is performed online.

3. A generalized two-region channel model is used;
which is more appropriate in characterizing the RSS in
WLAN systems [6].

4. The localization problem is decoupled from the chan-
nel learning problem and both the observed and unob-
served AP’s are used for estimation as in [13].

Throughout the paper, we use the bold lower-case letters
denote column vectors. xk denotes the k-th element of x.

2. CHANNEL MODEL

The indoor propagation channel is usually modeled using the
log-normal distribution model [4, 5]. The received signal
strength (in dBm) from the k-th acces point is modeled as

rk(dBm) = ηk − 10γk log10

(
dk

d0

)
+ wk (1)

where wk is a zero-mean Gaussian noise with variance σ2,
γk is the path-loss exponent, dk is the Euclidean distance be-
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tween the receiver and the k-th access point and ηk is the ref-
erence power (in dBm) at distance d0. In practice, the value
of γk varies with the indoor environment and the operating
frequency band. Therefore, γk cannot in general be treated
as a deterministic variable. Rather, it has a probability den-
sity function (PDF) that is determined by the indoor environ-
ment. This PDF could be approximated by a normal distribu-
tion with a mean that is dependent on the indoor environment.
In Fig. 1, we show an example of the distribution of the path
loss exponent in a typical indoor office environment that has
both open areas with cubicles and high-wall rooms.
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Fig. 1. An example of the distribution of the path loss expo-
nent of NLOS channels in a typical indoor office environment.

We adopt the two region channel model [6], where small
distances between the AP and the Receiver Unit (RU) are as-
sumed to have an LOS channel, whereas large distances are
assumed to have an NLOS channel. The border between small
and large distances is a predetermined distance d1 which is
set in the range 5-10 meters from the AP. The channel model
is characterized by the mean of the log-normal shadowing
model as [6]

µk =
{

ηk − 10γ0 log10 (dk/d0) if dk ≤ d1

η̃k − 10γk log10 (dk/d1) if dk > d1
(2)

where γ0 is the LOS path loss exponent, and η̃k is chosen such
that the continuity is preserved at d = d1 (at any value of γk).

We assume that the RSS measurements from the different
AP’s are independent and have the same variance. The impact
of fading can be mitigated by proper scanning strategies and
averaging before processing the RSS measurements [14].

3. THE MMSE ESTIMATOR

It was shown in [13] that the incorporation of the unobserved
AP’s significantly improves the overall performance espe-
cially under poor AP geometry. An AP is not observed if the
corresponding RSS is lower than the receiver sensitivity, λ.
The log-likelihood function if both observed and unobserved
access points are used in estimation is [13]

L(r,A|x, y,γ) =
∑
k∈A

− (rk − µk)2

2σ2
+

∑
k∈A

log Q

(
µk − λ

σ

)
(3)

where A and A denote respectively the sets of indices of ob-
served and unobserved access points; and Q(t) ,

∫ ∞
t

e−x2/2

[15].
If {γk} are unknown, we need to jointly estimate (x, y; {γk})

in (3). The straightforward approach for estimating (x, y)
is to treat {γk} as nuisance parameters and average it out
through its PDF. Based on our earlier discussion, the distri-
bution of γk in the NLOS region can be approximated as

γk ∼ N (γ, δ2) for all k (4)

and {γk} are independent. For consistency, we assume that
γk in the LOS region has another normal distribution with
γ = γ0, and δ = 0. Defining the average likelihood as

L(r|x, y) ,
∫

γ

L(r,A|x, y,γ)fγ(γ) (5)

Then after substituting from (3) and discarding the irrelevant
terms, we get

L(r|x, y) =
∑
k∈A

rk

σ2

∫
t

µkfγk
(t) − 1

2σ2

∫
t

µ2
kfγk

(t) +

∑
k∈A

∫
t

log Q

(
µk − λ

σ

)
fγk

(t) (6)

To simplify notations, we define for the NLOS region

µk(x, y) ,
∫

t

µk(x, y, t)fγk
(t)

= η̃k − 10γ log10 (dk/d0) (7)

ωk(x, y) ,
∫

t

µ2
k(x, y; t)fγk

(t)

= η̃2
k − 20η̃kγ log10 (dk/d0) +

100(δ2 + γ2) log2
10 (dk/d0) (8)

Note that, log Q (x) can be approximated by a piecewise-
linear function. Hence,∫

t

log Q

(
µk(x, y; t) − λ

σ

)
fγk

(t) ≈ log Q

(
µk(x, y) − λ

σ

)
(9)

Hence the revised likelihood function in (6) becomes

L(r,A|x, y) =
∑
k∈A

rkµk(x, y)
σ2

− ωk(x, y)
2σ2

+

∑
k∈A

log Q

(
µk(x, y) − λ

σ

)
(10)

This likelihood function is evaluated at a set of candidate
points distributed over a grid whose center is the centroid of
the observed access points. The maximum likelihood esti-
mate is the grid point that corresponds to the maximum value.
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The Minimum Mean-Square Error (MMSE) estimator
can be evaluated similarly. If the unknown position (x, y) is
treated as a random variable, the MMSE estimator is

ĝ ,
∫

x

∫
y

(x, y)T f(x, y|r)

=
1

f(r)

∫
x

∫
y

(x, y)T f(r|x, y)fa(x, y) (11)

where fa(x, y) is the apriori PDF of the position and it can
have several forms that are described in details in [16]. In
the simplest case, it has a uniform distribution over the search
grid. In this case, the MMSE estimator becomes

ĝ = c
∑

x

∑
y

(x, y)T exp
(
L(r|x, y)

)
(12)

where L(r|x, y) is as in (10) and c is a normalization factor.
The inexact knowledge of all {γk} causes performance

degradation of RSS-based indoor localization systems that
use an AP database when compared to fingerprinting-based
systems (where a good approximation of each γk can be com-
puted from the RSS fingerprint). This performance degrada-
tion is illustrated in Fig. 2 where we show the performance
of the MMSE algorithm when all {γk} are known (which
approximates fingerprinting-based systems) versus the more
general case when only γ is known. We also include the Mod-
ified Cramer-Rao Bound (MCRB) as described in [13]
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Fig. 2. Performance degradation of the MMSE algorithm
from exact to average γk over an area of 100 × 100 m with
γ = 4.1, σ = 3 and δ = 0.3

4. LEARNING ALGORITHM

The above analysis assumes that γ is deterministic and
known. In practice, γ varies with the terrain of the indoor
environment, and a versatile indoor positioning system must
adapt to the indoor environment in order to operate reliably
under all conditions. In Fig. 3 we show the impact on per-
formance when incorrect γ is used, where different incorrect
values are used rather than the true value. This highlights the
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Fig. 3. Performance degradation of the MMSE algorithm
with incorrect γ over an area of 100 × 100 m with γ =
3.8, σ = 3 and δ = 0.3

need for the online learning of the channel during positioning.

The objective of online channel learning is to estimate γ
in the NLOS region from the RSS observations. If γk is con-
sidered as a random variable, then its MMSE estimator is,

γ̂ = E{γ|r}

=
∫

x

∫
y

E{γ|r, x, y}f(x, y) (13)

where f(x, y) is the PDF of the receiver position. In the
NLOS region, we have from (2)

E{γk|rk, x, y} =
η̃k − rk

10 log10(dk(x, y)/d1)
(14)

where dk(x, y) is the distance between the point (x, y) and
the k-th AP. The corresponding estimation variance is

ξ2
k =

σ2

(10 log10(dk(x, y)/d1))
2 (15)

Therefore, if we have N RSS observations, we get the Wiener
filter relation

E{γ|r, x, y} =
1
ν

N∑
k=1

1
ξ2
k

E{γk|rk, x, y} (16)

=
10
νσ2

N∑
k=1

(η̃k − rk) log10

(
dk(x, y)

d1

)
(17)

where ν ,
∑N

k=1 ξ−2
k . The PDF f(x, y) in (13) can be

approximated by a probability distribution over the grid of
search points that is proportional to the corresponding likeli-
hood function from the MMSE position estimator in (10).

If γ is not time-varying, then the estimation variance
could be reduced by temporal averaging; which reduces the
impact of spurious observations. Let γ̂t denote the estimate
at time t, then the channel estimation formula becomes

γ̂t+1 = (1 − ϵ)γ̂t + ϵE{γ|rt} (18)

where ϵ is a smoothing factor (typically ≤ 0.1), and rt is the
vector of RSS observations at t.
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5. SIMULATION RESULTS

We use the following experimental setup for evaluating the
proposed algorithms. The access points are randomly scat-
tered over an area of 100 × 100 meters (according to a uni-
form distribution). The RU moves within the area at a speed
of 1 m/s and the scanning rate is 1 Hz. The channel model
between the receiver and each of the access points is as de-
scribed in (1) and (2) with σ = 3 dBm. The path loss ex-
ponent in the NLOS region is distributed as N (γ, δ2), with
δ = 0.3 and γ = 4.1. The MMSE as described in (12) is
evaluated on a 2D grid within the area with spacing of 2 me-
ters between adjacent grid points. For each experiment, we
evaluate 103 routes along the area, where each route has on
average 100 scans.

First, we illustrate the effectiveness of the channel learn-
ing algorithm. In Fig. 4, we show an example of a typical
learning curve of γ. The true value is γ = 4.1 and the initial
value is 3.4. In the learning algorithm, we set ϵ = 0.01 in
(18). The figure has two cases: the first case is a hypothet-
ical case; which assumes that the correct position is always
known, while the second case uses the MMSE position esti-
mate to update γ. As illustrated in Fig. 4, the practical case
converges properly and the joint estimation of the position
and γ is similar to the case with known position.
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Fig. 4. Example of the learning curve for estimating γ with
20 access points

Next, we show the performance of the MMSE algorithm
with channel learning for the above setup. The initial esti-
mate of γ is set at 3.4 (recall the true value is 4.1). The per-
formance is summarized in Fig. 5 where the MSE is averaged
along the time of learning. As noticed from the figure, the per-
formance improves significantly with learning. The standard
deviation of the positioning error is around 10 meters with
only 10 reference access points in a 100 × 100 meters area.
Unlike most other positioning algorithms, the proposed algo-
rithm adapts to the indoor environment in an unsupervised
fashion and this performance is universal to any indoor envi-

ronment that has the underlying general probabilistic model
for the indoor channel.
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Fig. 5. Performance of the channel learning algorithm when
γ = 4.1 and the initial γ = 3.4

6. CONCLUSION

To enable universal indoor positioning, the system must adapt
to the variability of the communication channel, which is in-
evitable in the indoor environment. The NLOS path loss ex-
ponent in the indoor channel could vary widely between 2-6,
and it is also dependent on the operating frequency band. This
work addresses this fundamental problem with the following
steps:

1. A generalized channel model, that combines both LOS
and NLOS channels, is used. It treats the NLOS path
loss exponent as an unknown random variable. This
model encompasses other typical indoor channel mod-
els as special cases.

2. For this generalized model, we derived a novel MMSE
estimation procedure that uses both observed and un-
observed access points in estimation. It has scalable
complexity and it is suited for embedded systems.

3. We proposed an unsupervised channel learning pro-
cedure that operates online while positioning. We
showed that it provides significant improvement over
non-adaptive systems especially when a sufficient num-
ber of access points is available.

The missed piece in this universal positioning system, that
was not discussed here, is the outlier rejection mechanism,
which excludes the access points that does not comply with
the underlying channel model. This mechanism is described
in details in [17].

The proposed positioning algorithms are memoryless, and
the MMSE algorithm searches over a set of grid points that
are equally probable. Future work will study the use of a
Kalman filter to improve both the MMSE performance and
the adaptation algorithm.
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