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ABSTRACT

Prediction is used in virtually all compression systems. When such
a compressed signal is transmitted over unreliable networks, packet
losses can lead to significant error propagation through the predic-
tion loop. Despite this, the conventional design technique com-
pletely ignores the effect of packet losses, and estimates the pre-
diction parameters to minimize the mean squared prediction error,
and optimizes the quantizer to minimize the reconstruction error at
the encoder. While some design techniques have been proposed to
accurately estimate and minimize the end-to-end distortion at the de-
coder that accounts for packet losses, they operate in a closed-loop,
which introduces a mismatch between statistics used for design and
statistics used in operation, causing a negative impact on conver-
gence and stability of the design procedure. Instead, we propose in
this paper an effective technique for predictive compression system
design that accounts for the instability caused by error propagation
due to packet losses, and enjoys stable statistics during design by
employing open-loop iterations that on convergence mimic closed-
loop operation. Simulation results for a compression system with
a first order linear predictor demonstrate the utility of the proposed
approach, which offers significant performance improvements over
existing design techniques.

Index Terms— Predictor design, Asymptotic Closed-Loop de-
sign, Error Resilience, Linear Predictor

1. INTRODUCTION

Linear prediction is widely used in speech coding, speech synthe-
sis, speech recognition, audio coding, and video coding. In com-
pression systems, the prediction module plays an important role in
exploiting temporal and spatial redundancies. However, when such
a compressed data is transmitted over unreliable networks, errors
introduced due to the inevitable packet losses, propagate through
the prediction loop, causing substantial, and sometimes catastrophic,
deterioration of the received signal. Despite this, conventional com-
pression system design completely ignores the effect of channel loss,
and chooses the prediction parameters to minimize the mean squared
prediction error, and optimizes the quantizer to minimize the recon-
struction error at the encoder. This problem can be alleviated by
optimizing the system for the overall end-to-end distortion (EED)
observed at the decoder, which accounts for the effect of packet loss.
An optimal recursive technique to estimate EED at the encoder was
proposed in [1], and utilizing this distortion to optimally select the
parameters for motion compensated prediction in video coding was
proposed in [2]. However, designing optimal predictors and quantiz-
ers, while accounting for EED is a challenging task, as we need to
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work with a stable training set that accurately represents the true sig-
nal statistics. The open-loop (OL) and closed-loop (CL) approaches
were proposed in [3] for predictive vector quantization and have
been widely used since then. The OL approach uses the original
data as the prediction reference during design, but since the decoder
does not have access to the original data, the parameters designed are
not suitable for the statistics seen at the decoder. The CL approach
attempts to alleviates the problem of this mismatch by designing the
parameters using reconstructed data obtained in a closed-loop sys-
tem as the prediction reference. However, using these parameters in
a closed-loop system generates new prediction and reconstruction,
which implies they differ from the data the parameters were designed
for. This mismatch in statistics between design and operation grows
over time as the data is fed through the prediction loop in the coder,
leading to instability in both estimation of prediction parameters, and
design of quantizers, especially at lower bit rates. Note that this er-
ror propagation encountered during the design phase due to statistics
mismatch, differs from the error propagation due to packet losses.

In this paper we propose to address the challenging problem of
tackling these two types of error propagation, by designing the sys-
tem iteratively, wherein an estimated EED is minimized at each iter-
ation to account for packet losses, and the prediction reference from
the previous iteration is employed in an open-loop way to ensure
statistics used for design and operation are matched. Once the pa-
rameters being designed converge, the prediction reference in the
current iteration will match the reference from the previous iter-
ation, thus mimicking closed-loop operation. Hence, we call this
the asymptotic closed-loop (ACL) approach, which is similar to the
approach in [4, 5], wherein system design without accounting for
packet losses is proposed. We specifically describe a framework for
rate versus EED optimization of a compression system employing
a first order linear predictor. We also propose a new encoder archi-
tecture, in which the prediction at encoder is based on the expected
decoder reconstructions. Experimental results substantiate the util-
ity of the proposed approach with significant performance improve-
ments over existing design techniques.

2. PROBLEM SETUP

Fig. 1 illustrates a predictive compression system, wherein input sig-
nal samples, xn, 0 ≤ n < N , are coded by the encoder to generate
a bitstream, which is transmitted through a channel to the decoder,
where it is decoded to generate the reconstructed samples. The en-
coder uses its previous reconstructed samples, x̂e,n to generate pre-
dicted samples, x̃e,n and the prediction error, en = xn − x̃e,n. This
is quantized to generate ên, and sent over the channel. When the de-
coder receives ên, it adds it to its predicted sample, x̃d,n to generate
its reconstructed samples, x̂d,n. Note that the reconstructed samples
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Fig. 1: A predictive compression system
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Fig. 2: Closed-loop training approach

at the encoder, x̂e,n, and the decoder, x̂d,n, will differ when the chan-
nel is unreliable and packets carrying ên are lost. This uncertainty
results in x̂d,n being a random variable to the encoder. The prob-
lem at hand is to design optimal quantizers and predictors (PE , QE

and PD) to minimize the expected EED at the decoder to account for
packet losses. For the mean squared error distortion metric, expected
EED at the decoder is,

E{D} =

N−1∑
n=0

E{(xn − x̂d,n)2}

=

N−1∑
n=0

x2n − 2xnE{x̂d,n}+ E{(x̂d,n)2}. (1)

Clearly, to estimate this distortion, first and second moments of the
decoder reconstructions should be accurately estimated at the en-
coder.

3. BACKGROUND

3.1. End to End distortion estimation and prediction

A recursive technique to optimally estimate the expected EED at the
encoder in the presence of packet losses via the first and second mo-
ments of the decoder reconstructions was proposed in [1] for video
coders. The recursive algorithm optimally estimates the decoder
reconstructions’ first moment, E{x̂jd,n}, and the second moment,

E{(x̂jd,n)
2}, for every pixel j in frame n. These moments are then

used to estimate EED at the encoder using (1) to optimally switch
between inter-frame prediction and intra-frame prediction, to con-
trol the error propagation through frames. In [2], a new prediction
scheme is employed in conjunction with optimal EED estimation.
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(i)
2

x̂
(i−1)
0

x1

x̂
(i−1)
1

x2

x̂
(i−1)
2

e
(i)
1 e

(i)
2

e
(i)
1 e

(i)
2

x̂
(i)
1 x̂

(i)
2

Design a new Quantizer Q(i)

Design a new Predictor P (i)

−
+

−
+

Fig. 3: Asymptotic closed-loop training approach

Conventional motion compensated prediction employs the encoder
reconstructions for prediction, i.e., x̃je,n = x̂j+v

e,n−1, where v is the
optimal motion vector that minimizes the prediction error. Instead
in [2], the prediction is based on expected decoder reconstructions,
i.e., x̃je,n = E{x̂j+v

d,n−1}, where v is the optimal motion vector that
minimizes the EED of (1). This setup plays an important role in lim-
iting error propagation during decoder operation by appropriately
selecting motion vectors to predict from reference blocks that are
less likely to be corrupted by error propagation.

3.2. Closed-Loop versus Asymptotic Closed-Loop Design

In closed-loop iterative design [6], the coder operates in closed-
loop at each iteration to generate prediction errors and reconstructed
samples that are used to design the updated quantizer and the up-
dated predictor, respectively. At iteration i − 1, given a quantizer,
Q(i−1), and a predictor, P (i−1), a training set of prediction errors,
T (i) : {e(i)n }Nn=1, for iteration i is generated as,

e(i)n = xn − P (i−1)(x̂
(i)
n−1), (2)

where,

x̂(i)n = P (i−1)(x̂
(i)
n−1) +Q(i−1)(xn − P (i−1)(x̂

(i)
n−1)). (3)

These two equations are calculated sequentially for all values n.
Then given T (i), we design a new quantizer, Q(i). Using Q(i), a
new set of reconstructed samples, x̂′

(i)
n , is generated as per (3) and

based on this, we design a new predictor, P (i). These steps are re-
peated until convergence. Fig. 2 illustrates this closed-loop iterative
design. The major issue with this approach is that when the updated
parameters are employed in closed-loop at an iteration, new predic-
tion errors are generated, which differ from the errors the quantizer
was designed for, and this implies different reconstructions are gen-
erated, which differ from the reference reconstructions the predictor
was designed for. This mismatch in statistics between design and op-
eration builds up over time as the data is fed through the prediction
loop in the coder, leading to instability in the iterative design of both
the predictor and the quantizer, especially at lower bit rates. The
ACL design technique proposed in [4, 5], tackles this statistics mis-
match issue by designing the predictor and the quantizer in an open-
loop fashion, while ultimately optimizing the system for closed-loop
operation. Specifically, the prediction is based on reconstructions of
previous iteration, i.e.,the prediction errors are generated as,

e(i)n = xn − P (i−1)(x̂
(i−1)
n−1 ). (4)
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Given the new prediction errors, we design a new quantizer, Q(i).
This Q(i) is now employed to generate the reconstructed samples of
next iteration as,

x̂(i)n = P (i−1)(x̂
(i−1)
n−1 ) +Q(i)(xn − P (i−1)(x̂

(i−1)
n−1 )), (5)

again using the reconstructions of previous iteration for prediction.
Given these new reconstructions, we design a new predictor, P (i).
Note that the equations (4) and (5) are executed independently for
each sample of the sequence in an open-loop way. The main steps
of this technique are depicted in Fig. 3. The open-loop format en-
sures the predictor and quantizer employ exactly the same recon-
structed data and prediction error used for their design, eliminating
the statistical mismatch issue seen in closed-loop design. On conver-
gence, the predictor and the quantizer do not change, which implies,
x̂
(i)
n−1 = x̂

(i−1)
n−1 , i.e., predicting from previous iteration reconstruc-

tions is the same as predicting from the current iteration reconstruc-
tions, which is effectively closed-loop operation.

4. PROPOSED APPROACH

We propose a framework to design a first order predictor and a quan-
tizer to minimize the EED in (1). We first develop the EED esti-
mation algorithm, then we propose an encoder architecture in which
predictions are based on the expected reconstructions at the decoder
and finally we propose the ACL design approach that accounts for
packet loss to improve coding efficiency and design stability.

4.1. Expected Decoder Distortion and Reconstructions

We assume for simplicity of presentation that each packet contains
one sample (or alternatively that interleaving is used). The packet (or
sample) loss rate is denoted as p. The prediction model employed at
the decoder is a simple first order linear predictor,

x̃d,n = αx̂d,n−1, (6)

where α is the prediction coefficient that needs to be estimated. The
quantized prediction error, ên, transmitted over the channel, may or
may not be received by the decoder. If the current packet is received
(with probability 1 − p), the decoder uses it to generate the recon-
structed sample as,

x̂d,n = x̃d,n + ên. (7)

When the packet is lost, a simple concealment of setting residue to
zero is employed, which gives the reconstructed sample as,

x̂d,n = x̃d,n. (8)

Thus the first and second moment of the decoder reconstructed sam-
ples, required to estimate EED given in (1), are calculated recur-
sively at the encoder as,

E{x̂d,n}=(1−p)E{ên + αx̂d,n−1}+ pE{αx̂d,n−1}
=(1−p)ên + αE{x̂d,n−1} (9)

E{(x̂d,n)2}=(1−p)E{(ên + αx̂d,n−1)
2}+ pE{(αx̂d,n−1)

2}
=(1−p)(ê2n + 2αênE{x̂d,n−1}) + α2E{(x̂d,n−1)

2}
(10)
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Fig. 4: Architecture of the proposed coder

4.2. Prediction Based on the Expected Decoder Reconstructions

Packet losses cause the reconstructions at the encoder and the de-
coder to differ. Thus to close the gap between prediction at the en-
coder and the decoder, we employ the expected decoder reconstruc-
tions for prediction at the encoder, i.e.,

x̃e,n = αE{x̂d,n−1}. (11)

The prediction error, en = xn − x̃e,n, is then quantized to generate,
ên. The overall proposed architecture is shown in Fig. 4.

We design the prediction coefficient α to minimize the EED, by
solving for α in the equation given by setting the partial derivative
of EED with respect to α to 0. The EED in (1) is dependent on α
through equations (9) and (10). The equation to be solved is,

∂E{D}
∂α

=

N−1∑
n=0

−2xnE{x̂d,n−1}+

N−1∑
n=0

2(1− p)ênE{x̂d,n−1}+ 2αE{(x̂d,n−1)
2}

= 0, (12)

which gives us the solution as,

α =

N−1∑
n=0

E{x̂d,n−1}(xn − (1− p)ên)

N−1∑
n=0

E{(x̂d,n−1)
2}

. (13)

Note that although ên is dependent on α, we assume that the mod-
ifications in α across our design iterations are small enough to not
change the quantization intervals.

4.3. Asymptotic Closed-Loop Design

We employ the ACL approach for a stable system design by elim-
inating the statistical mismatch issue of closed-loop design. This
is achieved by operating in an open-loop way, wherein we employ
previous iteration’s first and second moments of the decoder recon-
structions, to estimate current iteration’s moments and prediction.
Given a set of decoder reconstructions’ first moments, E{x̂d}(i−1),
and second moments, E{(x̂d)2}

(i−1)
, of iteration i − 1, the pre-

dictor and quantizer are iteratively designed in an inner loop. In a
subiteration s of the inner loop, given a set of quantized prediction
errors, ê(i,s−1)

n , the optimal prediction coefficient is estimated as,

α(i,s) =

N−1∑
n=0

E{x̂d,n−1}(i−1)(xn − (1− p)ê(i,s−1)
n )

N−1∑
n=0

E{(x̂d,n−1)
2}(i−1)

. (14)
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Fig. 5: Average decoder distortion (in dB) of CL, ACL and the proposed ACL-ER design approaches, for a first order predictive coder with
entropy constrained scalar quantizer, at various bit rates for packet loss rates of (a)5% (b)10% (c)20%.

The new prediction errors are now generated in an open-loop fashion
as,

e(i,s)n = xn − α(i,s)E{x̂d,n−1}(i−1). (15)

An optimal quantizer, Q(i,s), is now designed for this set of new
prediction errors, which is used to generate a new set of quantized
prediction errors, ê(i,s)n = Q(i,s)(e

(i,s)
n ). These subiterations are re-

peated until convergence to obtain current subiterations’ final quan-
tizer, Q(i), final prediction coefficient, α(i), and final set of quan-
tized prediction errors, e(i)n . The first and second moments of the de-
coder reconstructions are now updated in the outer loop in an open-
loop way as,

E{x̂d,n}(i) = (1− p)ê(i)n + α(i)E{x̂d,n−1}(i−1) (16)

E{(x̂d,n)2}
(i)

= (1− p)((ê(i)n )2 + 2α(i)ê(i)n E{x̂d,n−1}(i−1)) +

(α(i))2E{(x̂d,n−1)
2}(i−1)

. (17)

These moments are now used in the next iterations inner loop to
update the predictor and quantizer. Iterations are repeated until con-
vergence. Note that although the entire design is in open-loop, on
convergence it emulates closed-loop operation. This is achieved
as on convergence the quantizer and predictor do not change, i.e.,
Q(i) = Q(i−1) and α(i) = α(i−1), which implies E{x̂d,n}(i) =

E{x̂d,n}(i−1), thus employing previous iteration’s moments is the
same as estimating current iteration’s moments recursively and em-
ploying them for prediction in a closed-loop way.

5. EXPERIMENTAL RESULTS

To validate our proposed method, we evaluated it for a compression
system with first order linear prediction and an entropy constrained
scalar quantizer. The Generalized Lloyd Algorithm (GLA) was used
to design the entropy constrained scalar quantizer. We used the 6
speech files available in the EBU SQAM database [7] as our dataset,
as linear prediction is commonly employed in speech coding. How-
ever, note that the proposed approach is applicable to predictive com-
pression of any signal with temporal correlations. The first half of
the speech files were used as training set (resulting in more 2 million
samples) and the second half as test data. The prediction coefficient
was initialized to zero. We evaluated the following three different
design techniques:

1. The closed-loop design procedure discussed in Section 3.2,
which completely ignores the packet losses (referred as CL).

2. The ACL algorithm discussed in [5], which also ignores the
packet losses and can be obtained by setting p = 0 in the
update formulas of Section 4.3 (referred as ACL).

3. Our proposed method (referred as ACL-ER).

The system performance is evaluated by plotting the decoder recon-
struction error’s signal to noise ratio (RSNR) averaged over ten dif-
ferent loss patterns versus average bitrate, as shown in Fig. 5 for dif-
ferent packet loss rates. Clearly, the proposed approach consistently
outperforms both ACL and CL under all testing scenarios, with gains
of up to 7 dB over CL and gains of up to 2.5 dB over ACL. The pro-
posed approach provides higher performance improvements as the
packet loss rate increases, since accounting for error propagation
due to packet losses becomes critical in these cases. Compared to
ACL, our method provides larger gains at higher bitrates, as ACL re-
lies more on the high quality previous reconstructions for prediction,
unaware of the fact that these reconstructions at the decoder will be
corrupted as a result of error propagation due to packet losses. These
results substantiate the significant utility of the proposed approach.

6. CONCLUSION

In this paper we proposed an effective and robust design technique
for a predictive compression system. We account for the presence
of an unreliable channel by designing the system to optimize the
EED at the decoder. We then eliminate the statistical mismatch is-
sue suffered by conventional closed-loop approaches, by employing
a stable iterative design approach that operates in an open-loop way
and on convergence mimics closed-loop operation. By carefully de-
signing the system parameters, error propagation at the decoder is
effectively contained. Significant performance improvements seen
in experimental evaluation results demonstrate the utility of the pro-
posed approach. Future research directions include, extending the
proposed design technique to higher order predictors, and employ-
ing a powerful optimization technique for design of the entropy con-
strained scalar quantizer to account for packet losses.
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