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ABSTRACT

A drawback of digital transmission of analog signals is the un-
avoidable quantization error which leads to a limited quality even for
good channel conditions.

This saturation can be avoided by using analog transmission sys-
tems with discrete-time and quasi-continuous-amplitude encoding
and decoding, e.g., Analog Modulo Block codes (AMB codes). The
AMB code vectors are produced by multiplying a real-valued infor-
mation vector with a real-valued generator matrix using a modulo
arithmetic.

Here, algorithms for improving the decoding performance are
presented. The Lattice Maximum Likelihood (LML) decoder, a vari-
ant of the Discrete Maximum Likelihood (DML) decoder, is derived
and analyzed. It refines the Zero Forcing (ZF) result if necessary, thus
achieving near-ML signal quality with a reduced decoding complex-
ity. A reduced complexity is essential for decoding high-dimensional
code words. Additionally, pre- and post-processing methods are pre-
sented and analyzed, which increase the signal-to-distortion ratio
(SDR) of the received symbols.

Index Terms— analog channel coding, decoding, modulo oper-
ation, noise mitigation

1. INTRODUCTION

Digital transmission systems are very good if the used channel code is
designed for the correct channel quality. The irreversible quantization
error that is induced by the source encoder is their most prominent
disadvantage. Hybrid digital-analog (HDA) systems [1–4], which
transmit the quantization error in analog form as side information,
are one way to circumvent this disadvantage.

By applying a continuous-amplitude, discrete-time channel code,
the quantization can be avoided completely. In contrast to linear
analog channel codes that can correct burst errors, e.g., [5, 6], Analog
Modulo Block Codes (AMB codes, introduced in [7]) apply a mo-
dulo operation after multiplying an analog information vector with a
generator matrix. The modulo operation adds a non-linearity, which
improves the energy budget for transmission compared to Linear
Analog Block Codes [8]. AMB codes can be applied in low-delay ap-
plications where continuous-amplitude source symbols are transmit-
ted. A possible field of application are systems with low-complexity
transmitters – e.g., transmitters used in hearing aids, wireless sensors,
microphones, or loudspeakers – that are not designed to adapt to
changing channel conditions.

Existing decoders for AMB codes are the Minimum Mean
Square Error (MMSE) decoder, the Discrete Maximum Likelihood
(DML) decoder and the Zero Forcing decoder with Lattice Reduction
(ZFLR) [7]. The DML decoder is a compromise between the low
computational complexity of the ZFLR decoder and the MMSE

decoder, which achieves a minimum distortion. A novel approach
to achieve near-DML results with a reduced computational com-
plexity is presented in Section 4. Additional methods for pre- and
post-processing, which further reduce the decoding error, are shown
in Section 5.

2. SYSTEM MODEL

The system model from [7] is used. A block diagram of the trans-
mission system is shown in Fig. 1.
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Fig. 1. Block diagram of the transmission system.

A source vector u ∈ RM is considered with elements ui, where
−U ≤ ui < U . This vector1 is encoded with an Analog Modulo
Block Code (AMB code) by multiplying it with a generator ma-
trix A ∈ RM×N (where M < N ), followed by element-wise applica-
tion of a modified (symmetric) modulo operation

smodm(x) = ((x +m) mod 2m) −m for x ∈ R, (1)

which maps the input symbols onto the range (−m,+m) as shown in
Fig. 2. The value of m does not have any effect on the performance
if A is scaled appropriately. In this paper, we assume m = 1, but it is
explicitly mentioned in the equations to keep track of its influence.
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Fig. 2. Modified (symmetric) modulo function.

Briefly, the code words are defined by

y = smodm(u⋅A). (2)

The code rate is r = M
N

, as the encoder maps M source symbols onto
N channel symbols.

Here, we focus on systematic AMB codes with A = [1 Ã] for
simplicity. Because of the (M×M ) identity matrix 1, the information
words are contained in the code words, assuming that 0 < U ≤m.

The resulting code vector y ∈ RN is transmitted over a discrete-
time Additive White Gaussian Noise (AWGN) channel, which is
modeled by adding the noise vector n ∼ N (0, σ2

n ⋅ 1), n ∈ RN.

1 All vectors in this paper are row vectors.
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Finally, the received vector

z = y +n (3)

is processed by a decoder which generates an estimate û ∈ RM of
the source vector u.

The signal-to-noise ratio on the channel

CSNR =
E {∥y∥2}
E {∥n∥2}

=
N ⋅ σ2

y

N ⋅ σ2
n
=
σ2
y

σ2
n

(4)

is used as an expression for the channel quality, while the signal-to-
distortion ratio

SDR =
E {∥u∥2}

E {∥u − û∥2}
= M ⋅ σ2

u

M ⋅MSE
= σ2

u

MSE
, (5)

denotes the quality of the transmission, where MSE is the Mean
Square Error.

3. BASICS AND DECODING

In this section, the basics of AMB codes and different methods for
decoding are summarized, which have already been elaborated in [7].

The modulo function limits all code words to a (hyper-)cube
with side length 2m, which is caleld modulo cube. The code words
are located on distinguishable lines, which are in general parallel
M -dimensional subspaces of the code space RN. Fig. 3 shows the
code words of a simple code with M = 1 and N = 2.

y1
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(a) Original code words y
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(b) Rotated code words yG

Fig. 3. Valid code words and cube with A = [1 3.5] and m = 1.

3.1. Rotation
By rotating these subspaces in such a way that they are aligned
with M of the N dimensions, they form a lattice in the remaining
N −M = D dimensions, which we call discrete dimensions (y′2 in
Fig. 3). We can choose an N×D matrix Gd that applies this rotation
and gets rid of the M continuous dimensions (y′1 in Fig. 3). This
matrix, which only depends on the generator matrix A, maps the
valid code words y to discrete points (horizontal lines in Fig. 3b)

yd = y ⋅Gd = s̃⋅B with s̃ ∈ ZD. (6)

These points lie on a lattice with the base matrix B ∈ RD×D, which
can be derived from Gd as shown in [7].

3.2. Decoding
In order to decode a received word z, we use zd = z ⋅Gd to get an
estimate ŷd of the discrete lattice point yd. Then, the continuous
dimensions (that had been discarded by Gd) are restored. Finally,
a multiplication with the pseudoinverse A+ =AT ⋅ (AAT)−1 of A
yields an estimate û of the information word

û = (z − 2m [0 ŷd ⋅B
−1]) ⋅A+. (7)

In Section 4 the decoders Discrete Maximum Likelihood and
Zero Forcing with Lattice Reduction are used. Their methods for the
determination of ŷd are presented in the following.

3.2a) The discrete maximum likelihood (DML) approach deter-
mines the lattice point that is closest to zd:

ŷdDML = argmin
yd

∥zd − yd∥ . (8)

This method yields very good results, but it is computationally com-
plex, as the received sample has to be compared to each possible valid
discrete lattice point. A computationally less complex approximation
of this approach is presented in Section 4.

3.2b) The Zero Forcing (ZF/ZFLR) approach is based on the
lattice structure of the discrete points. The base matrix B derived
from Gd is not an optimal representation of this structure for our pur-
pose [7]. A representation L of B with preferably short base vectors
is called reduced [9, 10]. It can be used to find an approximation of
the transmitted lattice point:

ŷdZFLR = ⌈zd ⋅L−1⌋⋅L. (9)

Applying the rounding operation ⌈⋅⌋ yields an estimate of the valid
discrete part, because valid lattice points have integer entries in s̃
according to (6). In contrast to the DML approach, the decision
regions are parallelotopes regardless of the true Voronoi regions, and
invalid lattice points outside of the modulo cube are also considered.
However, this approach still yields acceptable results while having a
very low computational complexity.

A detailed description of the basics and the different decoders
can be found in [7].

4. LATTICE ML (LML) DECODER

The discrete part of the DML decoding approach described in Sec-
tion 3.2a basically is a lattice quantization with a lattice that is limited
to the projection of the modulo cube. In this section, an algorithm
with reduced computational complexity is presented. It does not take
this limitation into account, so that a generic lattice quantizer could
be used. However, most lattice quantizers do not work for arbitrary
lattices, but only for special lattices that are well-known [11–17].
Therefore, a method for quantization (i.e., maximum likelihood de-
coding of the discrete part) using arbitrary lattices with base matrix L
is developed in this section. Similar approaches are described in
[18–20].

4.1. Decision Regions: Zero Forcing vs. ML
As shown in Fig. 4, the decision regions of the Zero Forcing de-
coder (with lattice reduction, as in Section 3.2b) share a large central
region with the Maximum Likelihood decision regions. Therefore,
the result ŷdZFLR from (9) of the ZF decoder can be used as a first
approximation of the resulting lattice point estimate ŷd.

`1 = [0.8,0]

`2 = [0.3,0.5]

rc

ZF decision boundaryML decision boundary

Fig. 4. ML and ZF decision regions and the radius rc (see Section 4.3)

for L = [`1
`2

] = [0.8 0
0.3 0.5

], i.e., D =N −M = 2. Dots: lattice points.
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4.2. Decoding of the Estimation Offset
In order to refine the estimation from Zero Forcing to Maximum
Likelihood, the preliminarily decoded lattice point is subtracted from
the received point and thus regarded as the center. This way, only
the region inside its Voronoi region [12, 21] has to be considered.
Therefore, the point that remains to be decoded is (cf. Fig. 5)

e = zd − ŷdZFLR. (10)

This estimation offset e is the current (i.e., ZF) estimation of the
discrete noise (i.e., e = nGd for correct decoding ŷdZFLR = yd).

×

ZF decision boundary
ML decision boundary

Fig. 5. Lattice points , received point zd ×, estimation offset e ,
ZF decoded point ŷdZFLR , candidates C for ML .

Depending on the orientation of e, different candidates

C = {ŷdZFLR + q ⋅DL ∣ q ∈ {0,1}D} (11)

for the final ML estimation are examined, where the orientation of
the base vectors is determined by D = diag(sign(e ⋅ L−1)), and
q “activates” and “deactivates” the base vectors. These candidates
are all combinations of base vectors pointing roughly in the same
direction as e (from the ZF estimate ŷdZFLR). The lattice points and
candidates for an exemplary received vector are shown in Fig. 5.

Finally, the ML decision only has to be made among those
∣C∣ = 2D candidates:

ŷdLML = argmin
yd∈C

∥zd − yd∥ . (12)

This is the discrete part of the proposed Lattice ML (LML) decoder.
Fig. 6 shows a block diagram of the Lattice ML decoder.

ZFLR ML
zd

e

ŷdZFLR

ŷdLML

Fig. 6. Block diagram of the Lattice ML (LML) decoder.

4.3. Further Complexity Reduction by Radius Pre-Check
Fig. 4 also shows the radius rc of the circle inside which both decision
regions map to the same point. If the estimation offset e is inside
this circle (∥e∥ < rc), no further decoding is needed and the previous
step from Section 4.2 can be skipped (by leaving out (11) and (12) or
the gray part in Fig. 6), resulting in a decreased decoding complexity.
This happens when the noise is small,2 so that ∥e∥ = ∥nGd∥ < rc.

When the channel is good, ∥e∥ < rc holds for most transmit-
ted code words, so that in this case the decoding complexity is not
significantly higher than that of the ZF decoder.

This radius can be determined by

rc = min
i∈N≤D

1

2
∣ker(`j∀j ≠ i) ⋅ `i∣ , (13)

where `i, `j are the base vectors (rows of L) and ker is the kernel.
The vector ki = ker(`j∀j ≠ i) is a single vector of length 1 that is

2 Or when the noise is large enough to “move” the code word into another
(neighboring) decision region.

orthogonal to all base vectors except `i, and thus orthogonal to the
ZF decision boundary (hyper-)plane at the center of `i. The inner
product ki ⋅ `i of this kernel vector with the base vector `i is the
length of the projection, as ∥k∥ = 1. Among the D candidates, the
minimum is taken.

4.4. Simulation Results Lattice ML vs. ZFLR/DML
Fig. 7 shows simulation results3 comparing the Lattice ML decoder
with the standard DML decoder and the ZFLR decoder.
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Fig. 7. Simulation results for different decoders, A = [1 2 4].

In the region with very high CSNR, all decoders show the same
performance: the discrete part zd (cf. Fig. 8) is decoded correctly for
(nearly) all code words (i.e., with significantly low error probability),
and the continuous part is decoded in the same way for all decoders.
However, this saturation is reached earlier (in terms of CSNR) by
the LML and DML decoders than by the ZFLR decoder because of
the optimal decision regions in the discrete part, although the LML
decoder has a lower computational complexity.
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(a) DML decision regions
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0

1

z′2

z′3

(b) Lattice ML decision regions

Fig. 8. Decision regions of the DML and Lattice ML decoders,
A = [1 2.5 10]. The image shows a projection on the discrete
dimensions (zGd = [z′2 z′3]). Dashed: Projection of modulo cube.
Dots: valid lattice points.

For a very low channel quality, however, the SDR of the Lattice
ML decoder converges to the low SDR of the ZFLR decoder, because
both decoders consider non-existent discrete lattice points outside
of the modulo cube (Fig. 8b, in contrast to Fig. 8a). By applying
the pre- and post-processing which will be presented in Section 5,
this effect can be mitigated easily. It could be avoided completely
by checking whether a discrete point is inside the modulo cube and,
if so, applying a fallback solution (e.g., conventional DML decoding)
– but this would significantly increase the computational complexity.

3 All simulations in this paper have been conducted with the elements of u
being independent and uniformly distributed between −U = −1 and U = 1.
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5. PRE- AND POST-PROCESSING

Pre- and post-processing can be applied independently of the used
decoder type to increase the quality of the decoded signal. For both
proposed methods, a saturation function

satm(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−m for x ≤ −m
x for −m < x <m
m for m ≤ x

x
m

m

−m

−m

(14)

is needed, which limits the absolute of its input x to a given value m.
Fig. 9 shows a block diagram of both methods that will be ex-

plained in the next sections.

decoder
z′

Clipping

z û′

Truncation

û

Fig. 9. Block diagrams of pre- and post-processing.

5.1. Clipping
All valid code words y are inside the modulo cube, i.e., ∣yi∣ ≤m ∀i.
Therefore, the received values z can be limited to this cube:
z′ = satm(z).

Fig. 10b shows the decoded values û (as color) of a 1×2 code
when clipping is applied. The values outside the modulo cube are
mapped onto the nearest edge (or corner) before the actual decoding
is performed.

−2 −1 0 1 2
û

−1 0 1

−1

0

1

z1

z2

(a) No clipping

−1 0 1

−1

0

1

z1

z2

(b) With clipping

Fig. 10. ZF decoding of the A = [1 2] code without and with
clipping. Lines: valid code words. Color: decoded value.

5.2. Truncation
When the channel quality is good (i.e., the noise is small), most of
the values û′ with conventional decoding are within the valid range
of u. However, if the channel quality is bad, the values might get
very large (z ≈ n, ∥z∥ ≫ ∥u∥ for CSNR ≪ 1).

Limiting the elements of û to the maximum possible absolute
value U of u, i.e.,

û = satU(û′) so that ∥û∥∞ ≤ U, (15)
(see Fig. 9) leads to a significantly increased SDR especially for very
bad channel conditions.

By limiting the elements of û, the decoding error u − û is also
limited: ∥u − û∥2 ≤M(2U)2, and E {∥u − û∥2} ≤ 4MU2 (which
is not a tight bound). Thus, the SDR is lower bounded to

SDR
(5)= Mσ2

u

E {∥u − û∥2}
≥ σ2

u

4U2
. (16)

For uniformly distributed u it can be shown that SDR ≥ 1/4 ≈̂ −6dB.
Fig. 11 shows the influence of truncation on the decoded values û

for U =m. The extreme values with ∣û∣ > U here= 1 are avoided.
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(b) With clipping and truncation

Fig. 11. ZF decoding of the A = [1 2] code with truncation.

5.3. Simulation Results with Truncation and Clipping
Fig. 12 shows that the LML decoder nearly achieves DML perfor-
mance when clipping and truncation is applied.
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Fig. 12. Simulation results for A = [1 2 4] (cf. Fig. 7).

Without pre- or post-processing, the entries in û can become
arbitrarily large (and, thus, arbitrarily wrong), resulting in a very low
SDR. By limiting z (clipping) or û (truncation), the SDR can be
lower bounded, as shown in Section 5.2. When AMB codes are used
for speech or audio transmission, this avoids very loud and annoying
errors, especially in very bad channel conditions.

6. CONCLUSION

A computationally low-complexity approximation of the discrete
maximum likelihood (DML) decoder for AMB codes, the Lattice
ML decoder, was derived in Section 4. It uses the low-complexity
Zero Forcing decoder as an approximation which is then refined
by taking the neighboring lattice points into account. This check
can be skipped if the estimation offset is small, leading to a further
decrease in complexity. Except for including invalid lattice points
outside the modulo cube, this decoder achieves maximum likelihood
performance in the discrete part with low computational complexity.

Section 5 contains two simple methods (clipping and truncation)
to further increase the SDR of the decoded signals. These meth-
ods mitigate the effect that the Lattice ML decoder chooses invalid
lattice points under some circumstances, so that the Lattice ML de-
coder (nearly) achieves DML results with a significantly reduced
complexity.

AMB codes are a quantizer-free alternative for the low-delay
transmission of time-discrete analog signals, like sampled speech,
audio, or video. They can be used, e.g., in wireless microphones,
loudspeakers, or hearing aids. The proposed methods of Lattice ML
decoding and pre-/post-processing can be used for faster and better
decoding, respectively.
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