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ABSTRACT

The capacity regions of Gaussian broadcast channels depends on

the knowledge of channel state information (CSI). When there is

only statistical CSI at the transmitter and full CSI at the receiver,

the ergodic capacity region is unknown in general. In this paper

we investigate the relation between the degradedness and stochastic

orders among channels from the transmitter to different receivers.

We derive criteria to identify the degradedness for single and

multiple-antenna cases when the channels belong to the usual

stochastic order or the increasing convex order. Examples illustrate

the usage of the derived criteria. We also show a case in which the

channel enhancement technique can be applied even when there is

only statistical CSIT.

I. INTRODUCTION

When a 2-receiver broadcast channel (BC) is degraded, we know

that the capacity region of it [1] is the union, over all V , X satisfying

the Markov chain V → X → Y1Y2 of rate pairs (R1, R2) such that
{

R1 ≤ I(X ;Y1|V ),
R2 ≤ I(V ;Y2),

for some p(u,x).
Note that for non-degraded BC, only the inner and outer bounds

are known, e.g., Marton’s inner bound [2] and Nair-El Gamal outer

bound [3]. Therefore it is much easier to characterize the perfor-

mance of broadcast channels if we can identify the degradedness

of it.

The capacity region of an additive white Gaussian noise (AWGN)

BC (GBC) is known for both fixed and fading channels when the

channel state information is known at the transmitter (CSIT) as

well as at the receivers (CSIR). For multiple antennas GBC with

perfect CSIT and CSIR, [4] invented the channel enhancement

technique to form the degradedness and it is proved that Gaussian

input is optimal. Immense endeavors have be made to solve the

input covariance matrix of the Gaussian input, e.g., [5] [6] [7].

However, the problem is open when there is no perfect CSIT in

general any only limited cases are known [8]. The fading BC with

only perfect CSIR but no perfect CSIT lacks the degraded structure

in general for arbitrary fading distributions, which makes it a

challenging problem. In particular, the order of channel realizations

to different receivers in fast fading broadcast channels vary within a

codeword length. Therefore, intuitively we are not able to compare

This work has been performed in the framework of the European research
project DIWINE, which is partly funded by the European Union under its
FP7 ICT Objective 1.1 - The Network of the Future.

the channels as in full CSIT cases to identify the degradedness.

Note that, even for degraded BCs, for example fading Gaussian

BCs with coherent fading and statistical CSIT, Gaussian input is

not optimal [9].

Contrary to [9], in which the Hermite polynomial is used to give

a condition on what kind of fading distributions and degradedness

that non-Gaussian input must be used, in this paper, given only

statistical CSIT we investigate the order of channels between

the transmitter to different receivers by stochastic orders [10] in

order to compare the channels stochastically and to identify the

degradedness. We consider fast fading GBCs with only statistical

CSIT. For each individual channel the fading process is identically

and independently distributed (i.i.d.) and memoryless with arbitrary

distributions. More specifically, we prove that the usual stochastic

order is sufficient but not necessary to result in a degraded Gaus-

sian broadcast channel. We also identify the relation between the

increasing convex order and the degradedness for single antenna

cases, which is a more general stochastic order than the usual

stochastic order. We then extend the result partially to multiple-

antenna cases. The derived results can help to show the existence

of degraded broadcast channels which can further simplify the

characterization of the capacity performance when there is only

statistical CSIT.

The rest of the paper is organized as follows. In Section II

we introduce the preliminaries and the considered system model.

In Section III we discuss the derived conditions to identify de-

graded Gaussian broadcast channels with single antenna. Cases

with multiple-antenna are discussed in Section IV. Finally Section

V concludes this paper.

Notation: upper case normal/bold letter denote random vari-

ables/either random vectors or matrices, which will be defined when

they are first mentioned; lower case bold letters denote vectors.

The mutual information between two random variables is denoted

by I(.; .). X → Y → Z means X ,Y, Z form a Markov chain. The

complementary cumulative density function (CCDF) is denoted

by F̄X (x) = 1 − FX (x), where FX(x) is the CDF of X . And we

denote the probability mass function (PMF) and probability density

function (PDF) by P and f , respectively. X ∼ F denotes that the

random variable X follows the distribution F . vec(X) concatenates

the column vectors of X as a super vector. In is the identity matrix

with dimension n.

II. PRELIMINARIES AND SYSTEM MODEL

In this section we first introduce the considered system model

and then the underlying background knowledge for this work. We
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consider the case in which each node is equipped with a single

antenna.

We assume that there is full CSI at the receivers such that

they can compensate the phase rotation of their own channels,

respectively, without changing the capacity to form real channels.

Therefore, the considered L-receiver fast fading Gaussian broadcast

channel can be stated as

Yk =
√

HkX +Zk, k = 1 · · · L, (1)

where Hk is a real-valued non-negative independent random vari-

able denoting the square of receiver k’s fading channel with

complementary cumulative distribution functions (CCDF) F̄Hk
. The

channel input is denoted by X . We consider the channel input power

constraint as E[X2] ≤ PT . The noises {Zk} at the corresponding

receivers are independent additive white Gaussian noises (AWGN)

with zero mean and unit variance. We assume that the transmitter

only knows the statistics but not the instantaneous realizations of

{Hk}. In the following discussion of both single and multiple-

antenna cases, we will consider the two-receiver case first then

extend to the L-receiver case.

The following definition are important to derive the main results

in this work.

Definition 1. A two user broadcast channel is physically de-

graded if the transition distribution function satisfies fY1Y2 |X (·, ·|·)=
fY1|X (·|·) fY2|Y1

(·|·), i.e., X, Y1, and Y2 form a Markov chain

X → Y1 → Y2. A Gaussian broadcast channel is stochastically

degraded if its conditional marginal distribution is the same

as that of a physically degraded Gaussian broadcast channel,

i.e., there exists a distribution fY1|Y ′
2
(·|·) such that fY1|X(y1|x) =

∑y2
fY ′

2 |X (y2|x) fY1|Y ′
2
(y1|y2) and fY ′

2 |X = fY2|X .

Since the capacity regions of broadcast channels only depend

on the marginal distributions, in the following discussions and

derivations, the degraded means the stochastically degraded. The

following are definitions of the considered stochastic orders.

Definition 2. [10, (1.A.3), (4.A.5)] For random variables X and

Y , the usual stochastic order and increasing convex order are

respectively defined as

X ≤st Y : F̄X(x)≤ F̄Y (x), ∀x,

X ≤icx Y :

∫ ∞

t
F̄X(x)dx ≤

∫ ∞

t
F̄Y (y)dy, ∀ t.

Definition 3. Define the following sets Sst = {(H1, H2) : H1 ≥st H2}
and Sicx = {(H1, H2) : H1 ≥icx H2}.

III. FADING GAUSSIAN BROADCAST CHANNEL WITH

SINGLE ANTENNA

In this section we introduce the relation between the existence of

the equivalent degraded Gaussian broadcast channel and different

stochastic orders between channels to different receivers. This

relation is helpful to identify the existence of the ergodic capacity

region.

Lemma 1. The condition H1 ≥st H2 is sufficient to construct an

stochastically equivalent degraded Gaussian broadcast channel.

Proof. From the same marginal property, we know that if there exist

H ′
1 and H ′

2 such that pY ′
1 |X = pY1 |X and pY ′

2 |X = pY2|X , where Y ′
1 =

H ′
1X +Z1 and Y ′

2 = H ′
2X +Z2, then these two broadcast channels

are stochastically equivalent. Besides, from [11, Proposition 9.2.2]

Fig. 1. The considered Gaussian broadcast channel.

we know that if H1 ≥st H2, then there exist random variables H ′
1

and H ′
2 having the same distributions as H1 and H2, respectively,

such that P(H ′
1 ≥ H ′

2) = 1, which completes the proof.

The equivalent channels H ′
1 and H ′

2 can be explicitly constructed

as follows, which is extended from [12, P.15].

Lemma 2. If H1 ≥st H2, and if the inverse of CDFs F−1
H1

and F−1
H2

exist, then the equivalent channels H ′
1 and H ′

2 can be constructed

by H ′
1 = F−1

H1
(U) and H ′

2 = F−1
H2

(U), respectively, such that P(H ′
1 ≥

H ′
2) = 1, where U ∼Uni f (0,1).

Remark 1. Originally, even though we know H1 ≥st H2, the order

of the channel realizations H1 = h1 and H2 = h2 may vary for

each realization, which hinders the justification of degradedness.

However, from Lemma 2 we know that we can virtually explicitly

align all the channel realizations within a codeword length such

that each channel gain realization of H1 is no worse than that of

H2, if H1 ≥st H2. Then we can claim that there exists an equivalent

degraded Gaussian broadcast channel.

Definition 4. Define the set of pairs of fast fading channels

(H1, H2) as

SD = {(H1, H2) : the fast fading Gaussian broadcast

channel is degraded.} .
In the following, we classify the relation between SD and

different stochastic orders.

Fig. 2. The relation between different stochastic orders and the set

SD , which is encircled with shadowed area.

Lemma 3. The usual stochastic order H1 ≥st H2 is not necessary to

generate an equivalent degraded broadcast channel. The increasing

convex order is not sufficient to guarantee (H1, H2) ∈ SD . Further-

more, (H1,H2) ∈ SD does not necessarily imply H1 ≥icx H2,

Sketch of proof: the detailed proof can be modified from [13].

To show that the usual stochastic order is not necessary, we can
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construct an example in which H1 has non-zero probability at

zero magnitude while H2 has no zero component. Let the support

of the PDF of H1 be ∈ [h0, h1], where h0 > 0 is the crossing

point of F̄1 and F̄2. By definition, this example does not satisfy

the usual stochastic order. In addition, we can prove that this

example satisfies P(r ≤ H̃r ≤ r + ε, e ≤ H̃e) = 0, where ε > 0

is arbitrarily small and e > r + ε, by constructing an equivalent

joint CCDF F̄H̃r,H̃e
(r,e) = min{F̄H̃r

(r), F̄H̃e
(e)} [8]. Therefore,

this example is degraded. To show the second statement of this

lemma, we can exploit the above example with the additional

condition
∫ h0

0 |F̄H1
(h)− F̄H2

(h)|dh ≤ ∫ ∞
h0
|F̄H1

(h)− F̄H2
(h)|dh. Then

we have an example which satisfies the increasing convex order.

That means, there exists (H1, H2) ∈ Sicx which is degraded. To

show the third statement, we can show the existence of cases

with orders more general than the increasing convex order which

can result in degraded broadcast channel by constructing an

example in which there are several discrete channel values with

non-zero probabilities. By using the proof of usual stochastic

order is not necessary for degradedness, we can complete the proof.

Combining the results in Lemmas 2 and 3, we obtain a Venn

diagram as shown in Fig. 2 illustrating the relation between SD,

Sst , and Sicx.

Now we can further generalize Lemma 3 to the case in which

fading channels are formed by clusters of scatterers. In particular,

we consider the case in which we are only provided the statistics

of each cluster but not the superimposed result as
√

Hk in 1.

Therefore, phases of channels of each cluster should be taken

into account, i.e., we consider the k-th clusters of the first and

second user as H̃1k = H̃1k,Re + i · H̃1k,Im =
√

H1ke−iφ1k and H̃2k =
H̃2k,Re + i · H̃2k,Im =

√
H2ke−iφ2k .

Lemma 4. Let M be the number of clusters of scatterers for both

users 1 and 2, and denote the channels of users 1’s and 2’s kth clus-

ters as H̃1k and H̃2k, respectively, where k = 1, · · · , M. The broad-

cast channel is degraded if user 1’s scatterers are stronger than

those of user 2’s in the sense that H̃π1k,ReH̃π1 j ,Re ≥st H̃π2k,ReH̃π2 j ,Re,

and H̃π1k,ImH̃π1 j ,Im ≥st H̃π2k,ImH̃π2 j,Im, ∀k, j ∈ {1, · · · , M}, for some

permutation π1 and π2 of users 1’s and 2’s clusters.

The main idea of the proof of this lemma is by the fact that the

usual stochastic order is closed under convolution [10, Theorem

1.A.3], which claims that for two sets of independent random

variables {Ak} and {Bk}, if Ak ≥st Bk, ∀k ∈ {1, · · · , M} then for

any increasing function φ : RM → R, one has φ(A1, · · · , AM) ≥st

φ(B1, · · · , BM). In particular, ∑M
k=1 Ak ≥st ∑M

k=1 Bk. In our problem,

from Lemma 1 we know that |∑M
k=1 H̃1k|2 ≥st |∑M

k=1 H̃2k|2 is

sufficient to attain a degraded GBC. After expanding the left and

right hand sides in addition with [10, Theorem 1.A.3], we can get

Lemma 4.

The condition of the number of clusters of channels 1 and 2

in Lemma 4 can be relaxed to two non-negative integer-valued

random variables N and M, respectively, and the result is still

valid, if |∑N
k=1 H̃1k|2 ≥st |∑M

k=1 H̃2k|2 and if N ≥st M, which can

be proved with the aid of [10, Theorem 1.A.4].

In the following we can extend the above result to scenarios with

more than two receivers.

Corollary 1. For an L-receiver fast fading Gaussian broadcast

channel, if H1 ≥st H2 ≥st · · · ≥st HL, then it is degraded.

Remark 2. Note that the above discussion can be easily extended

to complex cases with the assumption of full CSI at the receivers,

where the noises are circularly symmetric complex Gaussian. With

the former assumption the channel phase can be absorbed into

the noises, which does not change the distributions of noises by

the second assumption. Then it is easy to see that the in-phase and

quadrature channels form a pair of identical parallel real Gaussian

broadcast channels as shown in (1).

III-A. Examples of channels within the set SD

In the following, several examples with practical fading channels

based on Corollary 1 are provided to explain how to determine

the existence of the capacity, given the distributions of the fading

channels. Three receivers are considered.

1) Assume the magnitudes of the three channels are independent

Nakagami-m random variables with shape parameters m1,

m2, and m3, and spread parameters w1, w2, and w3 [14],

respectively. From Corollary 1 we know that the broadcast

channel is degraded if

γ
(

m1,
m1x
w1

)

Γ(m1)
≥

γ
(

m2,
m2x
w2

)

Γ(m2)
≥

γ
(

m3,
m3x
w3

)

Γ(m3)
, ∀x,

where γ(s,x) =
∫ x

0 ts−1e−tdt is the incomplete gamma func-

tion and Γ(s) =
∫ ∞

0 ts−1e−t dt is the ordinary gamma function.

An example satisfying the above inequality is (m1,w1) =
(1,3), (m2,w2) = (1,2) and (m3,w3) = (0.5,1).

2) In Fig. 3 we show an example that not all channel pairs

satisfy the usual stochastic order but still it results in a

degraded broadcast channel. From the proof of Lemma 3 we

know that if F̄k(h) = ck, h ∈ [0, hk], where hk is the crossing

point of F̄k(h) and F̄3(h) and F̄k(h) ≥ F̄1(h), k = 1,2, then

H3 is degraded with respect to Hk. On the other hand, we

can observe that H1 ≥st H2 by definition. Therefore, H2 is

degraded with respect to H1, and this forms a degraded GBC.

In this example, the non-zero probabilities of H1 and H2 at

zero magnitude can be treated as the sensitivity of the analog

front ends at the receivers.

3) For full CSIT cases under block fading, if the transmitter

perfectly knows the channel realizations H1 = h1, H2 = h2,

and H3 = h3, then the CCDFs are given by F̄Hk
= 1−u(h−

hk), k = 1, 2, 3. From Lemma 3 we know that h1 ≤ h2 ≤ h3

results in the degraded broadcast channel, which is consistent

to the traditional way to check the degradedness when there

is perfect CSIT.

IV. MULTIPLE ANTENNAS

Based on the observation from single antenna cases, we aim

to extend the description of this relation to cases in which there

are multiple antennas at all terminals. We assume all terminals are

equipped with the same number of antennas nT . The result can

be extended to the case with different number of antennas at all

terminals by the same skills used in [4]. The received signals at

receiver 1 and receiver 2, respectively, can then be expressed as

Y1 = H1X+Z1, and Y2 = H2X+Z2, (2)

where Z1 ∼ CN(0, InT
) and Z2 ∼ CN(0, InT

), X ∈ CnT , H1 and

H2 ∈ CnT ×nT with entries varying for each code symbol. For the
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Fig. 3. An example that not all channel pairs satisfy the usual

stochastic order but still results in a degraded broadcast channel.

MIMO case, we apply the multi-variate usual stochastic order to

the eigenvalues of H1
−1H1

−H and H2
−1H2

−H , which are real.

From [15] we know that the probability of a random matrix

H with i.i.d entries following continuous distributions being low

rank has measure zero, which implies that H−1H−H having finite

eigenvalues has measure one. Thus we may assume that the channel

matrices are invertible. In addition with the assumption of full

CSIR, we can normalize (2) equivalently as

Y1
′ = X+Z1

′, and Y2
′ = X+Z2

′, (3)

where Z1
′ ∼ CN(0, A) and Z2

′ ∼ CN(0, B), A , H1
−1H1

−H ,

B , H2
−1H2

−H . For full CSIT and full CSIR cases, the constraint

B−A < 0 is sufficient1 to make the Markov chain X → Y1
′ → Y2

′

valid. On the contrary, in the considered scenario we have full

CSIR but only statistical CSIT. Therefore, we aim to construct

equivalent channels H′
1 and H′

2 to show P(B′ − A′ < 0) = 1

according to Lemma 2, where A′ = (H1
′)−1(H1

′)−H and

B′ = (H2
′)−1(H2

′)−H . Note that in [10, Theorem. 6.B.1] the usual

stochastic order in vector (but not matrix) version is considered,

where in vec(B) ≤st vec(A), the inequality is element-wise, i.e.,

b′i ≤ a′i, ∀ i, for P(vec(B′) ≤ vec(A′)) = 1. However, we can

not directly apply the multivariate usual stochastic order to our

scenario because it does not guarantee the positive definiteness

of B − A. In the following we aim to find the relation of the

degradedness and the stochastic order of the channels through the

eigenvalues of A and B, which will be shown to be sufficient to

identify the existence of A′ and B′ such that P(B′−A′ < 0) = 1.

In the following, we derive a result which allows us to stochas-

tically compare the minimum and maximum eigenvalues of the

covariance matrices of receiver 1’s and receiver 2’s channels.

Theorem 1. A sufficient condition to have a degraded MIMO

Gaussian broadcast channel is

λmin(H1H1
H)≥st λmax(H2H2

H). (4)

The proof is sketched as follows. From [16, Theorem 9H.1]

we know that λmax(AB−1) ≤ λmax(A)λmax(B
−1). If we enforce

the upper bound of λmax(AB−1) to be less than 1, then from

1The reason that it is not necessary is, we may be able to use the channel
enhancement scheme to obtain a degraded channel with B � A.

[17, 10.50(b)] we know that B − A < 0 is valid. Thus we can

get the sufficient condition of the degraded MIMO Gaussian

broadcast channel by letting λmax(A)λmax(B
−1) ≤ 1. Since

λmax(A)−1 = λmin(A
−1) > 0, we have λmax(B

−1) ≤ λmin(A
−1).

After applying the property of multi-variate usual stochastic order

we can get the result.

Theorem 1 can be generalized to N-user cases as follows.

Corollary 2. A sufficient condition for an L-receiver fast fading

MIMO GBC to be a degraded one is that

λmin(HkHk
H )≥st λmax(Hk+1Hk+1

H), ∀ k ∈ {1 · · ·L−1}.

In the following we provide another scenario resulting in the

degradedness.

Theorem 2. Let H1
′ = ΣΣΣ

1/2

111 H1, H2
′ = ΣΣΣ

1/2

222 H2. If H1 and H2 are

isotropically distributed and ΣΣΣ111 � ΣΣΣ222 ≻ 0, where ΣΣΣ111 and ΣΣΣ222 are the

antenna correlation matrices at the receivers 1 and 2, respectively,

then it is equivalent to a degraded Gaussian broadcast channel.

Sketch of proof: We can form an equivalent broadcast channel

by absorbing ΣΣΣ
1/2

111
and ΣΣΣ

1/2

222
into noise covariance matrices. Since

the vector of the ordered eigenvalues of the second equivalent

noise covariance matrix majorizes that of the first one by the

monotonicity theorem [18, Theorem 8.4.9], we can show that the

new second received signal is stochastically degraded respect to

the first one. With the property that both H1 and H2 are i.d., we

can further prove that fỸ2|X = fY2|X. Thus we conclude that the

original channel is equivalent to a degraded one.

Remark 3. The result in Theorem 2 can be easily extended to the

case with L-receiver. The constraint ΣΣΣ111 � ΣΣΣ222 in Theorem 2 can be

relaxed to ΣΣΣ111 � ΣΣΣ222 by deterministic channel enhancement [4]. The

following is an example.

Example: For the Gaussian broadcast channel

Y1 = ΣΣΣ
1/2

111 HX+Z1 and Y2 = ΣΣΣ
1/2

222 HX+Z2, (5)

assume that the fading channel H has realizations

{H0,{H0B} : B ∈ U(n2
T )}, where U(n) is the unitary group

with degree n. The distribution of H can be arbitrary. Then

it is easy to see that we can apply the channel enhancement

technique [4] to the pair of channel realizations (ΣΣΣ
1/2

111 H0, ΣΣΣ
1/2

222 H0)
to construct an equivalent degraded MIMO GBC. It is also to see

that B can be absorbed into X when the optimal distribution of

X is Gaussian [4], which is in fact the case when the channel

enhancement is considered.

V. CONCLUSION

In this work we characterize the relation between the stochastic

orders and the degradedness among different receivers of a

Gaussian broadcast channel. In particular, we investigate the usual

stochastic order and the increasing convex order. Both single and

multiple antennas at all nodes are considered under fast fading

with statistical CSIT. We derive criteria to check the degradedness

of several commonly used Gaussian broadcast channels which is

helpful to characterize the performance of the broadcast channel

under statistical CSIT.
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