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ABSTRACT

We advocate the use of interval-type bounds on cumulative distribu-
tion functions, called probability boxes, to handle several problems
arising when a wireless communication system performance must
be assessed in the presence of model uncertainties, poorly known or
unknown dependencies of random variables, or imprecisely speci-
fied probability distributions. The amount of uncertainty is evaluated
quantitatively by using sharp bounds on performance parameters.

Index Terms— Wireless channel models; Probability boxes; Un-
certainty propagation; Dependence bounds

1. INTRODUCTION AND MOTIVATION OF THE WORK

A good deal of research activity in wireless communications is de-
voted in finding accurate statistical models of the channel. A ma-
jor problem here is caused by the fact that no single model (e.g.,
Rayleigh or Rice fading distributions) is accurate enough for a wide
variety of physical channels. Considerable effort has been spent in
the search for general classes of probability density functions (pdfs)
that are physically justified and flexible enough to fit a large mass
of experimental results. Nonetheless, wireless system analysis and
design should in some way account for the uncertainty intrinsic in
the use of an inaccurate channel model, which adds to that caused by
the randomness in system behavior but differs from it in a substantial
way. In [6], it is suggested that we should treat in a different way the
uncertainties due to randomness and those due to ignorance. This
distinction has generated several techniques to deal with the latter
type of uncertainty: among them, we recall random-set theory [3,8],
fuzzy-set theory [20], Dempster–Shafer theory [14], and probabil-
ity boxes (relations among these techniques, and some equivalence
results, are discussed in [8, 12, 18]). Probability boxes use standard
probability theory, and for this reason we choose these among other
techniques. The present paper shows the application of this theory to
wireless communications, an area which was not considered before.

Probability boxes (or, for short, p-boxes) are interval-type bounds
on cumulative distribution functions (cdfs) that can handle several
problems, like model uncertainties, poorly known or unknown de-
pendencies of random variables (RVs), or imprecisely specified dis-
tributions [6, p. 12–14]. The key point here is that the use of p-boxes
in lieu of individual cdfs results into performance analyses not re-
lying on unwarranted distribution assumptions. With this approach,
instead of selecting a single distribution from a class of distributions
matching a set of constraints, the whole class of these distributions
is used. In addition, instead of deriving upper and lower bounds
on performance parameters only at the end of calculations (see, for
example, [5]), all relevant calculations keep track of the uncertain-
ties implicit in the entities used (this approach is similar in spirit to
interval analysis [9]).

This work was supported by Project TEC2012-34642.

This paper is organized as follows: after defining probability
boxes, Section 2 shows some examples of actual constructions and
combination of p-boxes, while Section 3 examines the important
case when two random variables (RVs) with unknown dependence
are combined by a binary operation. Conclusions are drawn in Sec-
tion 4.

2. PROBABILITY BOXES

Probability boxes are defined in terms of upper and lower probabili-
ties P and P , respectively [12]. Once upper and lower probabilities
have been assigned to every event in the probability space, upper
and lower cumulative distribution functions (cdf) of the RV X are
defined as [12, p. 24]

FX(x) � P (X � x), FX(x) � P (X � x) (1)

respectively. (Here, unless otherwise specified, we restrict our atten-
tion to RVs defined on the positive real axis R+.)

When the pair [FX , FX ] circumscribes an imprecisely known
cdf FX(x), it is called a p-box for FX(x). As a special case, an
interval [a, b] can be identified by a p-box with F (x) = u(x − a)
and F (x) = u(x − b), where u( · ) denotes the unit-step function.
A precise cdf has F = F = F . Fig. 1 below shows an example of a
p-box, to be illustrated later.

As a possible use of a p-box, one may choose a representative
cdf within it, and use it to determine the relevant performance metric.
A common approach consists of choosing the worst cdf within the p-
box, which is often unduly pessimistic, and may detract from robust-
ness [17]. Another approach consists of choosing a small number of
cdfs within the box, and determining a separate performance metric
for each one. This approach does not allow an overall synthesis of
the modeling effort.

2.1. Generating probability boxes

Probability boxes can be generated whenever sharp upper and lower
bounds on the cdf of a RV can be obtained on the basis of the knowl-
edge available about the RV itself. The width of a p-box yields a
quantitative indication of the effect of the model uncertainty on the
distribution of the RV and the performance parameters derived from
it. Hence, a wide p-box may not be caused by a weakness of the
theory, but rather reflects the amount of model uncertainty. P-boxes
can also show the robustness of a performance parameter against the
choice of a model.

2.1.1. Using moment bounds

Given a RV X whose N +1 moments μk � E[Xk], k = 0, . . . , N ,
are known, it is possible to evaluate upper and lower bounds to the
cdf of X . The classical solution to this problem, obtained through
moment bound theory [7], yields bounds that are sharp, i.e., such
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that there exists a pair of RVs that have moments μk, k = 0, . . . , N ,
and whose cdfs coincide with these upper and lower bounds. For
example [4], assume that the mean μ1 and the variance σ2

X � E[X−
μ1]

2 are known for a RV X taking values in the finite interval [a, b].
Then we have

0 � FX(x) � σ2
X

(μ1 − x)2 + σ2
X

, a � x � x1

(x− μ1)(b− μ1) + σ2
X

(x− a)(b− a)
� FX(x) �

� 1− (μ1 − x)(μ1 − a) + σ2
X

(b− x)(x− a)
, x1 � x � x2

(x− μ1)
2

(x− μ1)2 + σ2
X

� FX(x) � 1, x2 � x � b

(2)

where

x1 = a, x1 = μ1− σ2
X

b− μ1
, x2 = μ1+

σ2
X

μ1 − a
, x2 = b (3)

It is also possible to solve the same problem when the moments of
X take values that are only known within an interval. [1]

2.1.2. Using parameter intervals

Sometimes a model cdf can be assessed with reasonable accuracy,
except for its parameters that are known only within an interval. In
this case a p-box can be generated as the envelope of all cdfs whose
parameters lie in that interval. As an example, Fig. 1 shows the p-
box generated by Nakagami cdfs [16, p. 24] whose parameters are
m ∈ (0.5, 5.),Ω ∈ (1., 2.).
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Fig. 1. Probability box [FX , FX ] generated by Nakagami-m cdfs
with parameters m ∈ (0.5, 5.),Ω ∈ (1., 2.). The dashed curves
correspond to three Nakagami-m cdfs with randomly selected values
of m and Ω within their intervals.

2.1.3. Combining probability boxes

Given a set of p-boxes referring to an individual modeling problem,
they can be aggregated in several ways: [6, p. 67 ff.].

1. Intersection. If it is assumed that all p-boxes contain the
correct model cdf, then one may generate their intersection:

Given the n p-boxes [F i(x), F i(x)], 1 � i � n, the intersec-
tion p-box is [F

∗
(x), F ∗(x)], where

F
∗
(x) = min

(
F 1(x), . . . , Fn(x)

)
F ∗(x) = max (F 1(x), . . . , Fn(x))

(4)

2. Envelope. If at least one of the p-boxes contains the cor-
rect model cdf, then the p-box [F

∗
(x), F ∗(x)] may be used,

where
F

∗
(x) = max

(
F 1(x), . . . , Fn(x)

)
F ∗(x) = min (F 1(x), . . . , Fn(x))

(5)

3. UNCERTAINTY PROPAGATION: P-BOXES OF
COMBINATIONS OF RANDOM VARIABLES

An important application of p-boxes arises when a RV is obtained as
the result of combining other RVs described through their p-boxes.
In several instances, the resulting p-boxes can be computed by sim-
ple application of the definitions. As an example, consider the p-
boxes of the maximum and minimum of n independent RVs Xi, i =
1, . . . , n, each with cdf Fi(x) included in the p-box [F i(x), F i(x)].
The cdf of the maximum is, with obvious notations, Fmax(x) =∏n

i=1 Fi(x), and the cdf of the minimum is Fmin(x) = 1−∏n
i=1(1−

Fi(x)). Simple interval arithmetic [9] yields the p-boxes

Fmax(x) ∈
[

n∏
i=1

F i(x),

n∏
i=1

F i(x)

]

Fmin(x) ∈
[
1−

n∏
i=1

(1− F i(x)), 1−
n∏

i=1

(1− F i(x))

] (6)

General results can be obtained by considering binary operations
that are monotonic in both arguments, and in particular the four op-
erations, denoted ◦, of the set {+,−,×,÷}. Consider first the case
of two independent RVs whose p-boxes of cdfs are given. We denote
by ⊕, �, ⊗, and ÷©, respectively, the “generalized convolutions” that
combine FX and FY to generate FX◦Y , so that if for example Z =
X×Y we have FX×Y (z) = (FX⊗FY )(z) =

∫ z

0
FX(z/t) dFY (t).

In these conditions it can be easily proved [18, p. 100] that the p-
boxes for FZ are given by

FX+Y = FX ⊕ FY FX+Y = FX ⊕ FY

FX−Y = FX � FY FX−Y = FX � FY

FX×Y = FX ⊗ FY FX×Y = FX ⊗ FY

FX÷Y = FX ÷©FY FX÷Y = FX ÷©FY

(7)

3.1. Dependence bounds

A more interesting case arises when the RVs that are combined are
not independent, and their dependence is unknown or only partially
known. In this case, p-boxes can be obtained using upper and lower
bounds to cdfs obtained by bounding the copulas connecting the two
marginal pdfs into their joint pdf. This approach allows one to deter-
mine the width of the performance range caused by possibly unwar-
ranted independence assumptions.

A copula is a function C(x, y) that links the marginal cdfs of
two random variables X and Y to their joint cdf. If FXY denotes a
two-dimensional cdf with marginals FX , FY , then a copula C exists
such that

FXY (x, y) = C
(
FX(x), FY (y)

)
(8)
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Hence, the copula C contains all the information about the depen-
dence of X and Y . For example, C(x, y) = xy indicates that X and
Y are independent RVs [10, p. 25]. All copulas satisfy the inequali-
ties

W(x, y) � C(x, y) � M(x, y), ∀(x, y) ∈ [0, 1]× [0, 1] (9)

where both W and M are copulas, defined as [10, p. 14]:

W(x, y) � max(x+ y − 1, 0) and M(x, y) � min(x, y) (10)

Combining (8)–(10) one can obtain the Fréchet–Hoeffding bounds
on a joint cdf in terms of its marginals [10, 18, 19]:

max [FX(x)+FY (y)−1, 0]�FXY (x, y)�min [FX(x), FY (y)] (11)

3.1.1. Using copula bounds to generate dependence p-boxes

Consider a RV Z obtained as a composition of X and Y , We have
the following key result [19, Theorem 1]: Let X,Y denote two RVs
defined on the extended real line R

∗ � R ∪ {−∞,∞}, and L the
set of binary operations mapping R

∗ × R
∗ to R

∗ which are nonde-
creasing in each place and continuous except possibly at (0,∞) and
(∞, 0). If Z � X ◦ Y , where ◦ ∈ L and CXY is any lower bound
on copula CXY , then two functions ldbCXY

(the “lower dependence
bound”) and udbCXY

(the “upper dependence bound”) exist such
that, ∀z ∈ R

∗,

ldbCXY
(FX , FY , ◦)(z) � FZ(z) � udbCXY

(FX , FY , ◦)(z)
(12)

where [18, p. 76]

ldbCXY
(FX , FY , ◦)(z) � sup

x◦y=z
CXY (FX(x), FY (y)) (13)

udbCXY
(FX , FY , ◦)(z) � inf

x◦y=z
C∂
XY (FX(x), FY (y)) (14)

where the superscript ∂ indicates dual copula [10].
Here, CXY summarizes what we know about the dependence of

X and Y . If no information is available, since generally CXY � W,
one may use the loosest bound obtained by choosing CXY = W,
which yields the following expressions for ldb and udb:

ldbW = sup
x◦y=z

W
(
FX(x), FY (y)

)
(15)

udbW = inf
x◦y=z

W∂(FX(x), FY (y)
)

(16)

where W∂ = min(x + y, 1) is the dual of W. In this case, instead
of ldbW and udbW we may write ldb and udb, respectively.

The special case ◦ ∈ {+,−,×,÷} yields the following results,
valid on R

+ [18, p. 77-78]:

FX+Y (z) = sup
x+y=z

max[FX(x) + FY (y)− 1, 0]

FX+Y (z) = inf
x+y=z

min[FX(x) + FY (y), 1]

FX−Y (z) = sup
x+y=z

max[FX(x)− FY (−y), 0]

FX−Y (z) = 1 + inf
x+y=z

min[FX(x)− FY (−y), 0]

FX×Y (z) = sup
xy=z

max[FX(x) + FY (y)− 1, 0]

FX×Y (z) = inf
xy=z

min[FX(x) + FY (y), 1]

FX÷Y (z) = sup
xy=z

max[FX(x)− FY (1/y)− 1, 0]

FX÷Y (z) = 1 + inf
xy=z

min[FX(x)− FY (1/y), 0]

(17)

These bounds are sharp, i.e., cannot be further improved [18, p. 78
ff.], [12, p.6]. Notice also that the results in (17) and referring to
◦ = + and ◦ = − hold generally in R and not only in R

+ [18, p.
78], [12, p.6].

3.1.2. Using p-boxes of FX and FY

Finally, if FX , FY are cdfs in p-boxes [FX , FX ] and [FY , FY ],
then FX◦Y is contained in p-box [FX◦Y , FX◦Y ], where [19, p. 111]

FX+Y (z) = ldb(FX , FY ,+) FX+Y (z) = udb(FX , FY ,+)

FX−Y (z) = ldb(FX , FY ,−) FX−Y (z) = udb(FX , FY ,−)

FX×Y (z) = ldb(FX , FY ,×) FX×Y (z) = udb(FX , FY ,×)

FX÷Y (z) = ldb(FX , FY ,÷) FX÷Y (z) = udb(FX , FY ,÷)

3.2. Example 1

Our first example derives the p-box of the cdf of Z � X2
1 + X2

2 ,
where X1, X2 ∼ N(0, 1) are two RVs with correlation coefficient ρ.
Using a standard procedure, we rewrite Z in the form Z = λ1U

2
1 +

λ2U
2
2 , where U1, U2 are independent ∼ N(0, 1), and λ1, λ2 are the

eigenvalues of the covariance matrix of X1, X2, i.e., λ1 = 1−ρ and
λ2 = 1 + ρ. Thus, Z is the sum of two χ2 RVs with one degree of
freedom. Using Eq. (5.8) of [15], FZ(z) can be determined. Fig. 2
shows FZ(z) for correlation values ρ = 0, ρ = .5, and ρ = 1
(the latter value corresponds to the case X1 = X2). If the joint
distribution of X1, X2 is unknown, the p-box of FZ is obtained from
the first two equations of (17). The marginals here are, for i = 1, 2:
FX2

i
(xi) = erf

(√
xi/2

)
, xi � 0. Simple calculations lead to the

analytic expressions, valid for z � 0:

F (z) = max
{
2 erf

(√
z/4

)
− 1, 0

}
and F (z) = erf

(√
z/2

)
(18)

It is noticed that the p-box is not the envelope of the cdfs correspond-
ing to the whole set of values of ρ, because normal marginals do not
imply a normal joint cdf (see, e.g., [11, p. 128]). Thus, the gap en-
closing the three innermost curves of Fig. 2 reflects the uncertainty
in the knowledge of the value of ρ for jointly normal X1, X2, while
the wider gap reflects the uncertainty about their joint distribution.

To evaluate the impact on performance of the uncertainty on
the joint distribution, we examine (see Fig. 3) the error probabil-
ity of binary antipodal transmission over a wireless channel with
fading envelope R =

√
Z. The lower curve is obtained under

the assumption of independent X1, X2, which yields a Rayleigh-
distributed envelope, and hence error probability [2, p. 89] P (e) =

(1−√
η/(1 + η))/2, where η is the signal-to-noise ratio. The upper

curve is obtained by computer simulation, using FZ as the cumula-
tive distribution function of Z.

3.3. Example 2

In this example, we examine the potentially strong impact on the
performance of diversity combining caused by different joint distri-
butions having the same marginals. We assume two-branch diver-
sity with Rayleigh fading gains R1 and R2 on both branches, and
maximal-ratio combining. The equivalent fading Ř generated by the
combination is given by the square root of R2

1+R2
2 [2, p. 113]. With

R1, R2 independent, the cdf of Ř2 is FŘ2(z) = 1−e−z(1+z), z �
0. With unknown dependence, one can use the bounds of the first
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Fig. 2. Probability box [FZ , FZ ] generated by Z � X2
1 +X2

2 , with
X1, X2 ∼ N(0, 1). The inner cdfs are exact, and refer to X1, X2

jointly normal with correlation coefficient ρ.
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Fig. 3. Error probability of binary antipodal transmission over a
channel with fading envelope

√
X2

1 +X2
2 , where Z � X2

1 + X2
2 ,

with X1, X2 ∼ N(0, 1). Lower curve: X1 and X2 are independent.
Upper curve: Obtained from the upper dependence bound distribu-
tion FZ .

two equations of (17), with marginals FR2
i
(xi) = 1− e−xi , xi � 0,

i = 1, 2, which yields, for z � 0,

F (z) = max
{
1− 2e−z/2, 0

}
and F (z) = 1− e−z (19)

Fig. 4 shows the p-box of R2
1 + R2

2, while Fig. 5 compares the er-
ror probabilities of binary antipodal transmission with independent
diversity [2, p. 113] and worst-case dependent branches.

Related calculations were performed in [13], based on a para-
metric family of copulas (the Clayton copula) rather than depen-
dence bounds. As observed in [19, p. 134], the physical implications
of the choice of a copula family may not be immediately apparent.

4. CONCLUSIONS

We have examined how the use of p-boxes as interval-type bounds on
cumulative distribution functions is able to handle several problems
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Fig. 4. Probability box [FZ , FZ ] generated by Z � R2
1 +R2

2, with
Rayleigh-distributed R1, R2. The inner cdf is exact, and refers to
independent R1, R2.
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Fig. 5. Error probability of binary antipodal transmission over a
channel with diversity 2, Rayleigh fading and maximal-ratio com-
bining. Lower curve: Independent fading on the two branches. Up-
per curve: Obtained from the upper dependence bound distribution.

arising when a wireless communication system performance must
be assessed in the presence of model uncertainties. In particular, it is
shown how lower and upper bounds on required performance param-
eters can be derived even if their distribution cannot be calculated,
as it is only known that it belongs to a certain class. Dependence
bounds are especially informative, as a wide p-box may indicate the
need for additional modeling effort intended to gather information
about the joint cdf of the random variables affecting system perfor-
mance.
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