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Abstract—We study the problem of signal detection for the
ambient backscatter system (ABS) when data are transmitted
with differential modulation. An implementation of the maximum
likelihood (ML) detection algorithm is proposed. To reduce the
computational complexity, we further design a suboptimal detec-
tor and derive its bit error rate (BER) closed-form expression.
Moreover, both the upper and the lower bounds of the BER,
which can tell more insight of how system parameters affect
the detection performance, are obtained. Simulations are then
provided to corroborate the studies.

Index Terms—ambient backscatter, differential modulation,
signal detection, performance analysis, BER bound

I. INTRODUCTION

Ambient radio frequency (RF) signals have been widely
used for energy harvesting [1], which captures and recycles
environmental energy, such as broadcast TV, radio and cellular
signals, to operate low-power devices. It could also be used
for the simultaneous wireless information and power transfer
(SWIPT) [2], [3] where the receivers not only harvest the RF
signal but also decode the information carried by the signal.

Recently, a novel communication mechanism called the
ambient backscatter system (ABS) that employs ambient RF
signals in backscatter communication was introduced in [4].
Traditional backscatter system [5], i.e., the radio frequen-
cy identification (RFID), consists of a reader (the transmit-
ter/receiver) and a tag (the backscatter node). The reader usu-
ally generates a carrier signal, a part of which is harvested to
power the tag while the remainder signal will be backscattered
by the tag to the reader. However, ABS differs from RFID
in two aspects: (1) it makes use of ambient RF signals but
does not require a special-purpose infrastructure (e.g., a RFID
reader) to transmit signals; (2) it enables communications
almost everywhere and any time.

Following [4], connecting ambient backscatter tags with the
Internet via the existing Wi-Fi infrastructure was proposed in
[6], while the multi-antenna interference cancellation scheme
operating on the backscatter devices was proposed in [7]
are proposed. Nevertheless, these works mainly focus on the
hardware design and the prototype presentation but did not
provide the fundamental results from theoretical aspects.

Motivated by this, we propose a theoretical implementation
of the optimal maximum likelihood (ML) detector for an ABS
with differential modulation. As the ML detector may suffer
from high complexity, we next design a suboptimal detector
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Fig. 1. A three-node ABS consisting of an RF signal source, a passive tag
and a reader with differential modulation and demodulation at the tag and the
reader.

with an approximate detection threshold and derive the closed-
form bit error rate (BER). To further analyze how the system
parameters can affect the detection performance, we compute
the upper and the lower bound of the BER. A practical
approach to estimate the parameters required by the detectors
is also presented. Finally simulation results are provided to
demonstrate the effectiveness of the proposed detectors.

II. SYSTEM MODEL

Consider an ABS with differential modulation which con-
sists of an RF source, a passive tag and a reader, as depicted
in Fig. 1. Denote hst, hsr and htr as the coefficients of
the channels from the source to the tag, the source to the
reader, and the tag to the reader, respectively. All these channel
information are assumed unknown in our study. In this model,
the RF signal transmitted from the ambient source can be
received by both the tag and the reader.

The received signal at the tag from the source is

x[n] = hsts[n], (1)

where s[n] is the RF signal transmitted from the sources and
satisfies s[n] ∼ CN (0, Ps). Since the on-tag integrated circuit
only consists of passive components and involves little signal
processing, the noise at the tag is negligible [8].

The k-th symbol of the tag dk is differentially encoded at
the tag as

bk = bk−1 ⊗ dk, (2)

where bk is the k-th modulated symbol with the reference sym-
bol b0 = 1, and ⊗ represents addition modulo 2. We assume
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that dk has the equiprobability of being 0 and 1. Normally
the tag transmits at a much lower rate than the ambient RF
signal, then bk remains unchanged for N consecutive s[n].
The backscattered signal by the tag is then

xb[n] = αc[n]x[n], (3)

where c[n] is given as

c[n] = bk, n = (k − 1)N + 1, · · · , kN, (4)

and α is a real scaling term related to scattering efficiency and
antenna gain at a given direction [9].

The reader receives the superposition of the RF signal
transmitted from the source and the signal backscattered from
the tag, then we can get the received signal at the reader as

y[n] = hsrs[n] + htrxb[n] + w[n],

= (hsr + αhsthtrc[n])s[n] + w[n], (5)

where w[n] is the zero-mean additive white Gaussian noise
(AWGN) with variance Nw.

Remark 1: The time delay between the arriving of s[n]
and xb[n] at the reader can be ignored because [4]: (1) the
transmission speed of the electrical signal inside tag is as fast
as light speed; (2) the communication range of the RF-powered
devices is limited.

III. SIGNAL DETECTION

For notation simplicity, let us denote yk = [y[(k − 1)N +
1], · · · , y[kN ]]T as the k-th received signal vector at the reader
corresponding to the k-th modulated symbol bk.

A. Optimal Detector

The optimal ML detector can be derived from the joint prob-
ability density function (PDF) of yk and yk−1 conditioned on
bk and bk−1. Define r = [yk−1,yk]

T , then we have

r = Hs+w, (6)

where s = [s[(k−2)N+1], · · · , s[kN ]]T , w = [w[(k−2)N+
1], · · · , w[kN ]]T , and

H =

[
tk−1IN 0

0 tkIN

]
, (7)

where tk = hsr + αbkhsthtr and IN is the N -order unit
matrix.

Clearly, r is a complex Gaussian vector given bk−1 and bk,
i.e.,

p(r|bk−1, bk) =
1

(2π)2Ndet(C)
exp

{
−rHC−1r

}
, (8)

where

C =

[
ξk−1IN 0

0 ξkIN

]
, (9)

with ξk = |tk|2Ps + Nw. There exists an one-to-one corre-
spondence between bk and ξk: if bk = 0, then ξk = σ2

0 ; if
bk = 1, then ξk = σ2

1 , where

σ2
0 , |h0|2Ps +Nw, σ2

1 , |h1|2Ps +Nw, (10)

with h0 = hsr and h1 = hsr + αhsthtr. Though the reader
does not have the channel knowledge, the values of σ2

i can be
estimated as will be presented in Section III-D.

Let Zk = ∥yk∥2, then (8) can be further expanded as

p(r|ξk−1, ξk) =
(2π)−2N

(ξk−1ξk)N
exp

{
−Zk−1

ξk−1
− Zk

ξk

}
. (11)

Then the optimal detector can be formulated as

[ξ̂k−1, ξ̂k] = arg max
ξk−1,ξk∈{σ2

0 ,σ
2
1}

p(r|ξk−1, ξk), (12)

and {
d̂k = 0, if ξ̂k−1 = ξ̂k,

d̂k = 1, if ξ̂k−1 ̸= ξ̂k.

The detection rule here is similar to the traditional differential
demodulation, but unfortunately we have to do the joint
detection based on two consecutive received signal vectors.

From the total probability theorem, the PDFs of r under the
two hypotheses are

p(r|dk=0)=
p(r|ξk−1=ξk=σ2

0)+p(r|ξk−1=ξk=σ2
1)

2

p(r|dk=1)=
p(r|ξk−1=σ2

0 , ξk=σ2
1)+p(r|ξk−1=σ2

1 , ξk=σ2
0)

2
(13)

where p(r|ξk−1, ξk) is given by (11).
Therefore, we can summarize the algorithm for the optimal

ML detector in Algorithm 1 as

Algorithm 1
Require:

The k−1-th and k-th received signal vectors at the reader,
yk−1 and yk.

Ensure:
The k-th transmitted symbol by the tag, d̂k;

1: Calculate the two consecutive signal energies as Zk−1 =
∥yk−1∥2 and Zk = ∥yk∥2;

2: Substitute Zk−1 and Zk into (13) to obtain p(r|dk = 0)
and p(r|dk = 1);

3: If p(r|dk = 0) > p(r|dk = 1), d̂k = 0; otherwise, d̂k = 1;
4: return d̂k;

B. Suboptimal Detector

From Algorithm 1, we have to do two PDF calculations
before every symbol detection. We next propose a suboptimal
detector with simple implementation.

From (11), we see that Zk is the key statistics in the
detection. Clearly, Zk is a central chi-square random variable
with 2N degrees of freedom. From the central limit theorem,
when N is large, Zk asymptotically becomes a Gaussian
random variable, denoted by Z̃k,

The decision rule is based on the difference between two
adjacent Zk’s. The detector must identify whether there is a
significant change in |Vk| = |Zk − Zk−1|, i.e., if |Vk| ≥ Th,
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then d̂k = 1; otherwise, d̂k = 0. For clarity, we further denote
Z̃k|i as the Z̃k under the assumption of bk = i, and define
Vk|ij as Vk|ij = Z̃k|j − Z̃k−1|i. Then we can obtain

Z̃k|i ∼ N (Nσ2
i , Nσ4

i ), i = 0, 1. (14)

It can be readily checked that

Vk|00 ∼ N (0, ς21 ), Vk|11 ∼ N (0, ς22 ),

Vk|01 ∼ N (µ, ς23 ), Vk|10 ∼ N (−µ, ς23 ), (15)

where ς21 = 2Nσ4
0 , ς22 = 2Nσ4

1 , ς23 = N(σ4
0 + σ4

1), and µ =
N(σ2

1 − σ2
0).

Denote H0 and H1 as the hypotheses that dk = 0 and dk =
1, respectively. The PDFs of |Vk| under the two hypotheses
are given as

p|Vk|(v|H0) = p|Vk|00|(v) + p|Vk|11|(v)

=
1√
2πς21

e
− v2

2ς21 +
1√
2πς22

e
− v2

2ς22 , (16)

p|Vk|(v|H1) = p|Vk|01|(v) + p|Vk|10|(v)

=
1√
2πς23

e
− (v−µ)2

2ς23 +
1√
2πς23

e
− (v+µ)2

2ς23 . (17)

Thus, the decision can be alternatively made through

p|Vk|(v|H0)
H0

≷
H1

p|Vk|(v|H1) ⇔ |Vk|
H0

≶
H1

Th. (18)

Compared the with optimal detector, the suboptimal one is
obtained with reduced computational complexity, by trans-
forming the calculation and comparison of two PDFs to the
comparison with threshold.

Unfortunately, there does not exist a closed-form solution
for the inequality (18). Since the PDF in (16) can be approx-
imated as the PDF of the absolute value of a single Gaussian
random variable with zero-mean and the variance of ς23 , i.e.,

p|Vk|(v|H0) ≈
2√
2πς23

e
− v2

2ς23 , (19)

we can obtain the threshold Th in (18) as

Th =
|µ|
2

+
ς23 ln

(
1 +

√
1− e−µ2/ς23

)
|µ|

. (20)

It can be seen that as N becomes large, Th can be approxi-
mated as

Th ≈ T apx
h =

|µ|
2
. (21)

Remark 3: From (15), we can derive that E{|Vk|} = |µ|/2.
Thus, E{|Vk|} can be a practical alternative to the detection
threshold which could be directly obtained at the reader as the
number of k is large.

C. BER Performance
According to (18), the BER of the suboptimal detector is

given as

Pb=
1

2
Pr(|Vk| > T apx

h |H0) +
1

2
Pr(|Vk| < T apx

h |H1)

=
1

2

∫ ∞

Tapx
h

p|Vk|(v|H0)dv +
1

2

∫ Tapx
h

0

p|Vk|(v|H1)dv

=
1

2

[
Q

(
|µ|
2
√
ς21

)
+Q

(
|µ|
2
√
ς22

)
+Q

(
|µ|
2
√
ς23

)
−Q

(
3|µ|
2
√
ς23

)]

=
1

2

[
Q

( √
N∆

2
√
2(|h0|2+1/γ)

)
+Q

( √
N∆

2
√
2(|h1|2+1/γ)

)

+Q

( √
N∆

2
√
Σ1+Σ2/γ+2/γ2

)
−Q

(
3
√
N∆

2
√
Σ1+Σ2/γ+2/γ2

)]
(22)

where Q(x) is the tail probability of the standard normal
distribution, and

γ =
Ps

Nw
, ∆ =

∣∣|h1|2 − |h0|2
∣∣ ,

Σ1 = |h0|4 + |h1|4, Σ2 = 2(|h0|2 + |h1|2). (23)

Furthermore, we define ς2max = max{ς21 , ς22} and ς2min =
min{ς21 , ς22}. there is ς2min ≤ ς23 ≤ ς2max. Since Q(x) is a
decreasing function of x, we can obtain

Pb ≥
3

2
Q

(
|µ|

2
√

ς2min

)
− 1

2
Q

(
3|µ|

2
√

ς2max

)
, Pbl

Pb ≤
3

2
Q

(
|µ|

2
√

ς2max

)
, Pbu (24)

where Pbl and Pbu are the lower and the upper bounds of Pb,
respectively.

From (22) and (24), we can see that the BER performance
is a decreasing function of SNR γ, the length of the received
vector N , and the relative channel difference (RCD) ∆√

Σ1
.

D. Estimation of σ2
0 and σ2

1

Note that σ2
0 and σ2

1 are required for both detectors (13) and
(21). We then propose an approach to estimate them. Assume
that the channel coherent time spans M transmitted symbols
of the tag. Then the estimation method is described as follows:
Step 1: Compute the normalized energy of M symbols as

Ak = ∥yk∥2/N for k = 1, · · · ,M .
Step 2: Arrange Ak in ascending order, denoted as A↑

k.
Step 3: Considering the equiprobability of 0 and 1, the reader

computes

Amin =
2

M

M/2∑
k=1

A↑
k, Amax =

2

M

M∑
k=M/2+1

A↑
k, (25)

which are the two estimated results.
Remark 2: Seen from (13) and (21), we do not need to

judge which of the two values (Amin and Amax) should be
assigned which to σ2

i , which eliminates the need of training.
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Fig. 2. The BER versus SNR for the two detectors with N = 100 and RCD
= 0.5.
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Fig. 3. BER versus RCD for the two detectors with SNR = 10dB and
N = 100.

IV. NUMERICAL RESULTS

In this section, we resort to numerical examples to evaluate
the proposed studies. The channels and the AGWN are as-
sumed to follow CN (0, 1), and the channels hold unchanged
during 100 transmitted symbols of the tag, i.e., M = 100. The
tag coefficient α is set to 0.5. The detection thresholds of the
suboptimal detector are set as T apx

h and E{|Vk|}, respectively.
Totally 106 Monte-Carlo runs are adopted for average.

We first demonstrate the BER performance of the optimal
ML detector and the suboptimal detector in Fig. 2. The
theoretical BER in (22) is also displayed for comparison. We
set N = 100 and RCD = 0.5. We can see that the suboptimal
detector performs worse than the optimal ML detector due
to the Gaussian approximation. For the suboptimal detector,
the theoretical BER is perfect consistent with the simulated
results and the threshold E{|Vk|} outperforms the threshold
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Fig. 4. BER, the upper and the lower bounds of BER versus N for the
suboptimal detector with SNR = 10dB and RCD = 0.5.

T apx
h especially for large SNR. It can also be found that

the higher SNR leads to the reduced BER. However, for the
suboptimal detector, the performance improvement flattens as
SNR is relatively large, say above 15 dB, which verifies (22)
that as γ turns infinity, Pb is nearly uncontrolled by SNR.

Fig. 3 depicts the curves of BER versus RCD of the two
detectors. We set SNR = 10dB and N = 100. The BER
approaches to 0.5 at small RCD and there exists little gap
between the BER curves. We can infer that when RCD is
too small, all the detectors will fail to work with the poorest
detection performance. It can be also seen that larger RCD
will totally improve the detection performance regardless of
detectors.

Fig. 4 depicts the curves of BER versus N for the sub-
optimal detector when SNR = 10dB and RCD = 0.5. For
comparison, the upper and the lower bound of the BER (24)
are also plotted. It can be seen that the two simulated BERs
both approach the theoretical BER very well and E{|Vk|}
outperforms the threshold T apx

h as N becomes large. Besides,
the two bounds are both accurate.

V. CONCLUSION

This paper mainly considered the signal detection of the
ABS with differential modulation. We proposed a theoretical
algorithm implementation of the optimal ML detector. To re-
duce the computational complexity, we designed a suboptimal
detector with the approximate detection threshold and derived
the corresponding closed-form BER expression. The upper and
the lower bound of the BER were also obtained. Moreover, we
presented a method to estimate the parameters required by the
two detectors. Finally simulations were provided to verify the
theoretical results, where the larger the SNR, the N , and the
RCD are, the better performance the detectors can achieve.
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