
FIXED-COMPLEXITY VARIANTS OF THE EFFECTIVE LLL ALGORITHM
WITH GREEDY CONVERGENCE FOR MIMO DETECTION

Qingsong Wen and Xiaoli Ma

School of ECE, Georgia Institute of Technology, Atlanta, GA 30332

ABSTRACT
Effective Lenstra-Lenstra-Lovász (ELLL) algorithm is a common
low-complexity lattice reduction (LR) technique adopted in LR-aided
successive interference cancellation (SIC) multiple-input multiple-
output (MIMO) detectors. However, the original ELLL algorithm is
undesirable for hardware implementation since the number and the
sequence of ELLL iterations are not deterministic. To address these
issues, some fixed-complexity ELLL (fcELLL) algorithms have re-
cently been proposed. In this paper, we propose two new fcELLL
algorithms to further improve the efficiency of existing fcELLL al-
gorithms by eliminating unnecessary iterations, such that the fcEL-
LL algorithm exhibits faster convergence and lower computational
complexity. Compared to the existing fcELLL algorithms, simu-
lations show that the proposed fcELLL algorithms can save up to
39% − 48% complexity for 8 × 8 MIMO systems without perfor-
mance loss.

Index Terms— Effective LLL, lattice reduction, MIMO detec-
tion, successive interference cancellation.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) [1] has become one of the
key techniques to enhance the spectral efficiency and data rate in
modern wireless systems. However, it is hard to design high perfor-
mance MIMO detectors with low complexity. It is well-known that
maximum likelihood (ML) detector provides optimal error perfor-
mance, but it exhibits exponential complexity with respect to the
number of transmit antennas even implemented with the efficient
sphere decoding algorithm [2]. To reduce the complexity, linear de-
tectors and successive interference cancellation (SIC) detectors can
be adopted, but these detectors suffer from degraded error perfor-
mance compared to the ML detector due to diversity loss [3].

Recently, lattice reduction (LR) aided SIC detectors have attract-
ed lots of interests due to the high performance and moderate com-
plexity [4]. Among them, the Lenstra-Lenstra-Lovász (LLL) [5] and
effective LLL (ELLL) [6] algorithms have been commonly adopted
due to their polynomial complexity on average [7]. One drawback
of the LLL/ELLL algorithm is the variable complexity due to non-
deterministic iterations, which is not desirable for hardware imple-
mentation. To address it, some fixed-complexity LLL/ELLL (fcLL-
L/fcELLL) algorithms are developed [8, 9, 10], which have similar
complexity as the LLL/ELLL algorithms, but with fixed number of
iterations as well as the predefined sequence of iterations. Here we
focus on the ELLL/fcELLL algorithms, since they have less com-
plexity while maintaining the same bit error rate (BER) performance
compared with the LLL/fcLLL counterparts in the LR-aided SIC de-
tectors [10, 11].

In this paper, we propose two novel fcELLL algorithms with
greedy convergence which can adopt any predefined sequence of it-

This material is based on work supported by NSF ECCS-1202286.

erations of the existing fcLLL/fcELLL algorithms. First, we investi-
gate the ELLL’s termination characteristics. Then, motivated by the
investigation, we design two schemes to select the ELLL iterations
in the proposed two fcELLL algorithms, respectively, such that the
column swap occurs at each iteration for greedy convergence and
low complexity. Two types of column swap flag are designed, which
are used not only to track the column swap but also to decide the
algorithm’s termination. Lastly, simulations show that the proposed
two fcELLL algorithms exhibit faster convergence and lower com-
plexity than the ELLL and existing fcELLL algorithms.

Notations: (·)∗ and (·)H denote conjugate and Hermitian trans-
pose, respectively. Boldface upper- and lower-case letters indicate
matrices and column vectors, respectively. IN denotes the N × N
identity matrix. m :n denotes all integers fromm to n. bae indicates
rounding to the nearest integer of a. The real and imaginary parts of
a complex number are represented as R[·] and I[·], respectively.

2. PRELIMINARIES

2.1. System Model and LR-aided MIMO Detection
Consider a common flat-fading spatial multiplexing MIMO system
with Nt transmit and Nr receive antennas as

y = Hs+w, (1)

where H = [h1,h2, . . . ,hNt] is an Nr × Nt channel matrix,
s = [s1, s2, · · · , sNt]

T is the transmitted signal vector from the
QAM constellation set S whose real and imaginary parts are inte-
gers from the set {−

√
M + 1, . . . ,−1, 1, . . . ,

√
M− 1} withM

being the constellation size, w = [w1, w2, · · · , wNr]
T is the ad-

ditive white Gaussian noise vector with zero mean and covariance
matrix E[wwH] = σ2

wINr , and y = [y1, y2, · · · , yNr]
T is the re-

ceived signal vector. For simplicity, we assume that equal power is
adopted at each antenna with E[ssH] = σ2

sINt , and H is unknown
at the transmitter but known at the receiver.

The complex lattice L from channel matrix H is defined as

L(H) =

{
v

∣∣∣∣∣v =

Nt∑
i=1

cihi, ci ∈ Zj

}
, (2)

where Zj = {a+ bj|a, b ∈ Z} represents the Gaussian integer ring,
and the column vectors hi of the matrix H represent a basis of the
lattice. Given a basis H , LR algorithms produce a shorter and near-
orthogonal basis as H̃ = HT , where T is a unimodular matrix
consisted of Gaussian integers with determinant ±1 or ±j.

To incorporate LR into MIMO detection, we rewrite the system
model by applying scaling and shifting on s such that Hs can be
viewed as a lattice point with H as its basis, i.e.,

y′ =
y +H1(1 + j)

2
= HTT−1 s+ 1(1 + j)

2
+

1

2
w

= H̃z +
1

2
w, (3)

3826978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

Table 1. The ELLL Algorithm
Input: Q,R,P (after QR/SQRD/MMSE-SQRD: HP = QR)
Output: Q̃, R̃,T
1: Initialization: Q̃ = Q, R̃ = R,T = P , δ ∈ (1/2, 1]
2: k = 2
3: while k ≤ Nt

4: u = dR̃k−1,k/R̃k−1,k−1c
5: if u 6= 0

6: R̃1:k−1,k = R̃1:k−1,k − uR̃1:k−1,k−1

7: T:,k = T:,k − uT:,n

8: end


effective size
reduction

9: if δ|R̃k−1,k−1|2 > |R̃k,k|2 + |R̃k−1,k|2
}

Lovasz condition
10: swap columns k − 1 and k in R̃ and T̃

11: Θ=

[
α∗ β
−β α

]
with

α =
R̃k−1,k−1

||R̃k−1:k,k−1||

β =
R̃k,k−1

||R̃k−1:k,k−1||

12: R̃k−1:k,k−1:Nt = ΘR̃k−1:k,k−1:Nt

13: Q̃:,k−1:k = Q̃:,k−1:kΘH


column swap

14: k = max(k − 1, 2)
15: else
16: k = k + 1
17: end
18: end

where 1 is theNt×1 vector of ones, H̃ = HT is the reduced basis,
and z is the vector in the lattice-reduced domain. Then, the low-
complexity SIC or MMSE-SIC detectors are performed according
to (3) to obtain the estimated z as ẑ. Finally, the estimation of the
transmitted symbols s are computed as

ŝ = Q [2T ẑ − 1(1 + j)] , (4)

where Q(·) is the symbol-wise quantizer to the nearest point in the
constellation set S.

2.2. Effective LLL and the Fixed-Complexity Variants
The complex ELLL version with QR decomposition as preprocess-
ing part is summarized in Table 1, where the preprocessing part can
be sorted QR decomposition (SQRD) or MMSE-SQRD [12] to re-
duce ELLL’s iterations. The ELLL contains a while loop which re-
peatedly excuses three steps: 1) effective size reduction at Lines 4-8;
2) Lovász condition evaluation at Line 9; and 3) column swap at
Lines 10-13 based on the Lovász condition. Since the main com-
plexity comes from effective size reduction and column swap, we
refer one-time execution of these two parts as one ELLL iteration
for later comparison among ELLL variants. Each ELLL iteration
corresponds to a specific value of the control variable k ∈ [2, Nt]
in the while loop. Note that by replacing the effective size reduction
with size reduction in ELLL, the LLL algorithm (see Table I in [13])
is obtained with higher complexity than the ELLL algorithm.

When the control variable k reachesNt+1, the ELLL algorithm
terminates with a shorter and closer to orthogonal basis called ELLL-
reduced basis [6] defined as follows.

Definition 1 (ELLL-reduced basis): Let H̃ = HT = Q̃R̃ be
the QR decomposition of the reduced basis from matrix H . H̃ is
defined as an ELLL-reduced basis if it satisfies

|<[R̃k−1,k]|≤
1

2
|R̃k−1,k−1|, |=[R̃k−1,k]|≤

1

2
|R̃k−1,k−1|, (5)

δ|R̃k−1,k−1|2 ≤ |R̃k−1,k|2 + |R̃k,k|2, 1/2 < δ ≤ 1, (6)

where 2 ≤ k ≤ Nt. The (5) is called effective size reduction con-
dition, and the (6) is called Lovász condition where the parameter δ
is selected for performance-complexity tradeoff (larger δ results in
better performance but with higher computational complexity).

One issue of the ELLL algorithm is that the number of ELLL
iterations is not deterministic, even infinite in worst cases [7]. To
solve it, the fcELLL algorithm [10] with fixed maximum number of
ELLL iterations is developed. Another desirable property associated
fcELLL is that the sequence of ELLL iterations (i.e., the k sequence)
is also fixed and predefined, which is different from the original EL-
LL algorithm where the value of k can be decreased or increased
depending on Lovász condition (see Lines 9, 14, and 16 in Table 1).
These properties make fcELLL easier in hardware implementation.

By applying different types of sequence of ELLL iterations, we
can obtain the following fcELLL variants.
• Sequential fcELLL [10]: it adopts the sequential sequence [8]

which repeats a super-iteration composed of integers from 2
to Nt.

• Even-odd fcELLL: it adopts the even-odd sequence [14] which
repeats a super-iteration composed of even integers from 2 to
Nt followed by odd integers from 3 to Nt.

• Incremental fcELLL: it adopts the incremental sequence [9]
composed of initial stage followed by repeat stage, where the
initial stage comprises alternate reversed even odd sequence
with incremental length, and the repeat stage comprises the
repetition of the last Nt − 1 integers in the initial stage.

3. PROPOSED TWO GREEDY FCELLL ALGORITHMS

3.1. Motivation
The primary motivation of the proposed fcELLL algorithms is to
exploit the termination characteristics of the ELLL algorithm. To
understand it, we provide the following definition of LLL potential.

Definition 2 (LLL Potential [5, 10]): a positive real number de-
pending on the diagonal elements of R̃ matrix is the LLL potential

D
def
=

Nt−1∏
i=1

di =

Nt−1∏
i=1

|R̃i,i|2(Nt−i), (7)

where di = det2(Li) =
∏i

k=1 |R̃k,k|2, and Li is the sub-lattice
spanned by column vectors q̃1, . . . , q̃i of matrix Q̃ from H̃ = Q̃R̃.

During the execution of ELLL algorithm, the LLL potentialD is
monotonically decreasing and there exists a lower bound depending
on the lattice L(H̃) [5]. By checking the three steps of each ELLL
iteration as in Table 1, we conclude that both effective size reduction
and Lovász condition evaluation do not affect the LLL potential D.
The D only decreases when the Lovász condition is not satisfied in
an ELLL iteration that leads to the occurrence of column swap. For
greedy convergence and low complexity, our aim is to modify the
structure of fcELLL algorithm such that column swap always occurs
in each ELLL iteration in order to decrease the LLL potential D as
rapidly as possible. Similar idea can be found in the greedy diagonal
reduction (GDR) algorithm [15], which does not fix the number of
iterations.

3.2. Proposed Greedy fcELLL Algorithm I and II
The proposed two fcELLL algorithms are summarised in Tables 2
and 3, respectively, where Nmax is the predefined maximum num-
ber of ELLL iterations, and kSeq is the predefined k sequence for
deterministic ELLL iterations. Any k sequence of the existing fcEL-
LL algorithms can be used in the proposed two algorithms. For now,

3827

Table 2. Proposed Greedy fcELLL Algorithm I
Input: Q,R,P (after QR/SQRD/MMSE-SQRD: HP = QR)
Output: Q̃, R̃,T
1: Initialize: Q̃ = Q, R̃ = R, T = P , Nmax, kSeq

possibleCS = ones(1, Nt + 1)
2: niter = 1, kSeqidx = 1
3: while (niter ≤ Nmax) && (sum(possibleCS(2 :Nt)) 6=0)
4: k = kSeq(kSeqidx)
5: if possibleCS(k) == 1
6: possibleCS(k) = 0

7: if CScheck(k, δ, R̃)
8: Execute effective size reduction (Lines 4-8 of Table 1)
9: Execute column swap (Lines 10-13 of Table 1)

10: possibleCS(k − 1 : k + 1) = [1, 1, 1]
11: niter = niter + 1
12: end
13: end
14: kSeqidx = kSeqidx + 1
15: end
16: function flag = CScheck(k, δ, R̃)

17: u = dR̃k−1,k/R̃k−1,k−1c
18: R̃′k−1,k = R̃k−1,k − uR̃k−1,k−1

19: flag = (δ|R̃k−1,k−1|2 > |R̃k,k|2 + |R̃′k−1,k|2)

we adopt the incremental sequence in kSeq, since it exhibits better
performance than others as shown in [9].

The main idea of the proposed fcELLL algorithm-I is to check
whether column swap will occur before each ELLL iteration (Line
7 of Table 2) when following the predefined k sequence, such that
only the ELLL iteration with column swap is executed each time. To
facilitate it, we adopt an (Nt + 1)-bit flag possibleCS similar as
that in [9] to track the column swap, which is defined as

possibleCS(k)
def
=

{
1, column swap might occur at k,
0, column swap will not occur at k,

where bit-2 to bit-Nt of possibleCS correspond to indices k of EL-
LL iterations from 2 to Nt, while the bit-1 and bit-(Nt + 1) are
just nil bits for the simplified operation in Line 10 of Table 2. Each
possibleCS(k) is initialized as one before the fcELLL’s execution
because of no prior at first. If possibleCS(k) is one, then column
swap is checked (Lines 7, and 16-19 of Table 2) where the Lovász
condition is evaluated (Line 19 of Table 2) to check if there is col-
umn swap; if possibleCS(k) is zero, the algorithm proceeds to the
next ELLL iteration. Once an ELLL iteration with index k is per-
formed, the column swap of k and k±1 would be affected as shown
in [9], and thus the corresponding three bits of possibleCS are up-
dated as ones (Line 10 of Table 2). Note that different from ELLL,
the proposed fcELLL evaluates Lovász condition before the effec-
tive size reduction (Lines 7 and 8 of Table 2). Therefore, R̃k−1,k is
size reduced as R̃′k−1,k for Lovász condition evaluation when check-
ing column swap (Lines 18-19 of Table 2). The proposed fcELL-
L algorithm-I terminates either the maximum number of iterations
Nmax is achieved or possibleCS(k) is zero for k from 2 to Nt.

The main idea of the proposed fcELLL algorithm-II is to record
whether column swap will occur for each k before ELLL iterations
(Lines 2-4 of Table 3), and update the record at the end of each EL-
LL iteration (Lines 14-16 of Table 3). We design an Nt-bit flag
CSflag similar as the aforementioned possibleCS to record and
track the column swap. Since whether column swap of each k oc-
curs or not is known fromCSflag, we just select the ELLL iteration

Table 3. Proposed Greedy fcELLL Algorithm II
Input: Q,R,P (after QR/SQRD/MMSE-SQRD: HP = QR)
Output: Q̃, R̃,T
1: Initialize: Q̃ = Q, R̃ = R, T = P , Nmax, kSeq

CSflag = ones(1, Nt)
2: for i = 2 : Nt

3: CSflag(i) = CScheck(i, δ, R̃)
4: end
5: niter = 1, kSeqidx = 1
6: while (niter ≤ Nmax) && (sum(CSflag(2 :Nt)) 6=0)
7: k = kSeq(kSeqidx)
8: while CSflag(k) 6= 1
9: kSeqidx = kSeqidx + 1
10: k = kSeq(kSeqidx)
11: end
12: Execute effective size reduction (Lines 4-8 of Table 1)
13: Execute column swap (Lines 10-13 of Table 1)
14: CSflag(k) = CScheck(k, δ, R̃)

15: if(k > 2) CSflag(k −1)=CScheck(k −1, δ, R̃) end
16: if(k<Nt) CSflag(k +1)=CScheck(k +1, δ, R̃) end
17: niter = niter + 1, kSeqidx = kSeqidx + 1
18: end

with column swap when following the predefined k sequence (Lines
7-11 of Table 3). The same as the the proposed fcELLL algorithm-I,
the ELLL iteration with index k affects the column swap of k and
k ± 1, and thus the corresponding three bits of CSflag need to be
updated (Lines 14-16 of Table 3). Since updating CSflag involves
the evaluation of Lovász condition, we only update CSflag(k− 1)
if K>2 and CSflag(k + 1) if K<Nt to save complexity, which
is different from possibleCS (see Line 10 of Table 2 versus Lines
14-16 of Table 3). Note that CSflag(k) is one indicates that col-
umn swap definitely occurs at ELLL iteration with index k instead
of “might” occur as that in the possibleCS(k). The proposed fcEL-
LL algorithm-II terminates either the maximum number of iterations
Nmax is achieved or CSflag(k) is zero for k from 2 to Nt.

Note that we can set Nmax=∞ in the proposed two fcELLL
algorithms to obtain the versions without fixed-complexity. Then,
either proposed fcELLL gets best-achievable performance with an
ELLL-reduced basis after termination. Also note that the proposed
fcELLL algorithms can be extended to fcLLL versions like [8, 9] by
replacing the effective size reduction with size reduction or adding
full size reduction at the end of the proposed fcELLL algorithms.

4. NUMERICAL RESULTS AND DISCUSSION

We compare BER, convergence, and complexity of the ELLL and d-
ifferent fcELLL variants (Sequential fcELLL [10], Even-odd fcEL-
LL, Incremental fcELLL, and the proposed two fcELLLs) in LR-
aided MMSE-SIC detectors. Note that the LLL and fcLLL variants
(Sequential fcLLL [8], Even-odd fcELLL [14, 9], Incremental fcEL-
LL [9], and the fcLLL versions of proposed two fcELLLs) are not
considered, since they have the same BER but higher complexity
than the corresponding ELLL and fcELLL counterparts in LR-aided
MMSE-SIC detectors [10, 11]. In all LR algorithms, the MMSE-
SQRD is selected as the preprocessing part since it reduces the num-
ber of iterations [12], and the parameter δ = 3/4 is adopted for
performance-complexity tradeoff [5]. The MIMO channels are flat
Rayleigh fading whose entries are i.i.d. complex Gaussian variables
with zero mean and unit variance. The BER is evaluated versus ener-
gy per bit to noise density defined asEb/N0 = Nrσ

2
s/(σ

2
wlog2M).

3828

0 5 10 15 20 25 30 35 40

10
−4

10
−3

10
−2

10
−1

Number of ELLL Iterations (Eb/No=25 dB)

B
E

R

ELLL
Sequential fcELLL
Even−odd fcELLL
Incremental fcELLL
Proposed Greedy fcELLL−I
Proposed Greedy fcELLL−II
ELLL without fixed ELLL iterations

Fig. 1. BER versus number of ELLL iterations of different ELL-
L variants in LR-aided MMSE-SIC detectors for an 8 × 8 MIMO
system using 64-QAM with Eb/N0 = 25 dB.

14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

ELLL, Nmax=12
Sequential fcELLL, Nmax=12
Even−odd fcELLL, Nmax=12
Incremental fcELLL, Nmax=12
Proposed Greedy fcELLL−I, Nmax=12
Proposed Greedy fcELLL−II, Nmax=12
ELLL without fixed ELLL iterations

ML

LR−aided MMSE−SIC

MMSE−SIC

Fig. 2. BER versus Eb/N0 of different ELLL variants in LR-aided
MMSE-SIC detectors for an 8× 8 MIMO system using 64-QAM.

4.1. Performance of ELLL Variants with Fixed Complexity
Firstly, we consider the fixed-complexity cases, i.e., the maximum
number of the ELLL iterations is fixed in each LR algorithm.

Fig. 1 shows the uncoded BER performance of different LR al-
gorithms versus the number of ELLL iterations in LR-aided MMSE-
SIC detectors for an 8 × 8 MIMO system using 64-QAM. The best
BER from ELLL algorithm without fixed number of iterations is also
provided as a performance bound. It can be seen that all fcELLL al-
gorithms converge faster than the ELLL algorithm, and the proposed
two fcELLL algorithms converge fastest among all LR algorithms.
The proposed two algorithms only need around 12 ELLL iterations
to achieve near the best BER performance bound.

Fig. 2 depicts BER results versus Eb/N0 when the maximum
number of ELLL iterations is selected as 12. Compared to the Incre-
mental fcELLL, the Even-odd fcELLL, and the Sequential fcELLL
algorithms, the BER gains of the proposed two fcELLL algorithms
at BER=10−5 are 0.8 dB, 7.2 dB, and 17.3 dB, respectively.

4.2. Performance of ELLL Variants without Fixed Complexity
Secondly, we consider the cases without fixed complexity, i.e., no
limitation for the number of ELLL iterations. Besides the aforemen-
tioned LR algorithms, we also consider the GDR algorithm [15] (an-
other ELLL variant without fixed complexity) whose column swap
also occurs at each ELLL iteration as our proposed two algorithm-
s. Note that each LR here has the same BER results since each one
generates an ELLL-reduced basis after termination.

Fig. 3 depicts the complementary cumulative distribution func-
tion (CCDF) of the ELLL iterations of different LR algorithms in

0 5 10 15 20 25 30 35 40 45 50 55 60 65
10

−4

10
−3

10
−2

10
−1

10
0

Number of ELLL Iterations

C
C

D
F

ELLL
Sequential fcELLL
Even−odd fcELLL
Incremental fcELLL
GDR
Proposed Greedy fcELLL−I
Proposed Greedy fcELLL−II

Fig. 3. CCDFs of ELLL iterations of different ELLL variants with-
out fixed ELLL iterations in an 8× 8 MIMO system.

3 4 5 6 7 8
50

100

150

200

250

300

350

400

450

Number of Antennas (Nt=Nr)

A
ve

ra
ge

 N
um

be
r

of
 F

lo
ps

ELLL
Sequential fcELLL
Even−odd fcELLL
Incremental fcELLL
GDR
Proposed Greedy fcELLL−I
Proposed Greedy fcELLL−II

Fig. 4. Complexity comparisons of different ELLL variants without
fixed ELLL iterations from 3× 3 to 8× 8 MIMO systems.

an 8 × 8 MIMO systems, where the noise used in MMSE-SQRD is
randomly generated so that the SNR is uniformly distributed from
0 dB to 40 dB. It can be seen that the proposed two fcELLL and
the GDR achieve the best performance among all the LR algorithms.
Note that the proposed two fcELLL algorithms also enjoy the prede-
fined deterministic sequence of ELLL iterations, while the sequence
of ELLL iterations in GDR is not deterministic.

To approximately evaluate the computational complexity, the
average floating-point operations (flops) are simulated, where the
flops of different arithmetic operation are counted as: 1 for a real
operation (i.e., addition, subtraction, multiplication, division, com-
parison, squaxre root, and absolute value), 2 for rounding a complex
number, 6 for a complex multiplication, and 2 for a complex number
multiplied or divided by a real number. Fig. 4 shows the average
flops of different LR algorithms from 3 × 3 to 8 × 8 MIMO sys-
tems, where the noise in the MMSE-SQRD is the same as that in
Fig. 3. It can be seen that the proposed two fcELLL algorithms ex-
hibit lower complexity than other fcELLL algorithms as well as the
ELLL and GDR algorithm. Compared to other LR algorithms, the
proposed fcELLL algorithm I and algorithm II save around 7%-39%
and 20%-48% complexity in the 8× 8 MIMO systems, respectively.

5. CONCLUSION
In this paper, we propose two novel fcELLL algorithms with greedy
convergence. The idea is to exploit the termination characteristics of
the ELLL algorithm, such that column swap occurs at each iteration
to speed up termination process. Compared to ELLL and existing
fcELLL algorithms, the proposed two fcELLLs have quicker con-
vergence and lower complexity without performance loss.

3829

6. REFERENCES

[1] J. Mietzner, R. Schober, L. Lampe, W. H. Gerstacker, and P. A.
Hoeher, “Multiple-antenna techniques for wireless communi-
cations - a comprehensive literature survey,” IEEE Commu.
Surveys & Tutorials, vol. 11, no. 2, pp. 87–105, Second Quar-
ter 2009.

[2] J. Jaldén and B. Ottersten, “On the complexity of sphere decod-
ing in digital communications,” IEEE Trans. Signal Process.,
vol. 53, no. 4, pp. 1474–1484, Apr. 2005.

[3] D. Tse and P. Viswanath, Fundamentals of Wireless Communi-
cation. Cambridge, U.K.: Cambridge Univ. Press, 2005.

[4] D. Wübben, D. Seethaler, J. Jaldén, and G. Matz, “Lattice re-
duction,” IEEE Signal Process. Mag., vol. 28, no. 3, pp. 70–91,
May 2011.

[5] A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring poly-
nomials with rational coefficients,” Math. Annalen, vol. 261,
no. 4, pp. 515–534, 1982.

[6] N. Howgrave-Graham, “Finding small roots of univariate mod-
ular equations revisited,” in Proc. the 6th IMA Int. conf. on
Crypt. and Coding (IMACC), Cirencester, UK, Dec. 1997, pp.
131–142.

[7] J. Jaldén, D. Seethaler, and G. Matz, “Worst-and average-case
complexity of LLL lattice reduction in MIMO wireless sys-
tems,” in Proc. IEEE Int. Conf. Acoust., Speech and Signal
Process.(ICASSP), Las Vegas, NV, Mar. 2008, pp. 2685–2688.

[8] H. Vetter, V. Ponnampalam, M. Sandell, and P. A. Hoeher,
“Fixed complexity LLL algorithm,” IEEE Trans. Signal Pro-
cess., vol. 57, no. 4, pp. 1634–1637, Apr. 2009.

[9] Q. Wen and X. Ma, “An Enhanced Fixed-Complexity LLL Al-
gorithm for MIMO Detection,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Austin, TX, Dec. 2014, pp. 3231–3236.

[10] C. Ling, W. H. Mow, and N. Howgrave-Graham, “Reduced and
Fixed-Complexity Variants of the LLL Algorithm for Commu-
nications,” IEEE Trans. Commun., vol. 61, no. 3, pp. 1040–
1050, Mar. 2013.

[11] B. Gestner, W. Zhang, X. Ma, and D. Anderson, “Lattice re-
duction for MIMO detection: from theoretical analysis to hard-
ware realization,” IEEE Trans. Circuits Syst. I, vol. 58, no. 4,
pp. 813–826, Apr. 2011.

[12] D. Wübben, R. Böhnke, V. Kühn, and K. D. Kammeyer,
“Near-maximum-likelihood detection of MIMO systems using
MMSE-based lattice reduction,” in Proc. IEEE Int. Conf. Com-
mun. (ICC), vol. 2, Paris, France, Jun. 2004, pp. 798–802.

[13] X. Ma and W. Zhang, “Performance analysis for MIMO sys-
tems with lattice-reduction aided linear equalization,” IEEE
Trans. Commun., vol. 56, no. 2, pp. 309–318, Feb. 2008.

[14] G. Villard, “Parallel lattice basis reduction,” in Proc. ACM
Int. Symp. on Symbolic and Algebraic Computation (ISSAC),
Berkeley, CA, Jul. 1992, pp. 269–277.

[15] W. Zhang, S. Qiao, and Y. Wei, “A diagonal lattice reduction
algorithm for MIMO detection,” IEEE Signal Process. Lett.,
vol. 19, no. 5, pp. 311–314, May 2012.

3830

