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ABSTRACT

A new algorithm called SUMIS-BO is proposed for soft-output
MIMO detection. This method is a meaningful improvement of
the “Subspace Marginalization with Interference Suppression”
(SUMIS) algorithm. It exhibits good performance with reduced
complexity and has been evaluated and compared in terms of per-
formance and efficiency with the SUMIS algorithm using differ-
ent system parameters. Results show that the performance of the
SUMIS-BO is similar to the SUMIS algorithm, however its effi-
ciency is improved. The new algorithm is far more efficient than
SUMIS, especially with large systems.

Index Terms— MIMO, SUMIS, Box optimization, large sys-
tems, complexity

1. INTRODUCTION

Multiple-Input Mutliple-Output (MIMO) communication systems
have received considerable interest in recent years and have been
adopted in many wireless communication standards, such as IEEE
802.11n/ac [1] and 3GPP Long Term Evolution Advanced [2]. It
is known that MIMO systems can provide significant capacity im-
provement over other communication systems and their capacity
increases with the minimum of the number of transmit and receive
antennas [3]. At the receiver side of these systems, the use of a
soft output detector concatenated with a soft input channel decoder
provides significant increase of the reliability of wireless communi-
cations. A soft output detection algorithm provides reliability soft
information expressed as log-likelihood ratios (LLRs), which is used
by the channel decoder to carry out the final decision. In contrast to
the many advantages of the MIMO systems, a strong limitation is
the high computational cost of optimal detection to compute exactly
the LLR values. This problem can be especially significant in large
MIMO systems [4] and high order constellations. In these systems,
a good balance between performance and complexity is critical.

In the above context, actual output detectors exhibit different
tradeoffs between complexity and performance. The optimal de-
tector, which computes the LLR exactly, holds prohibitively high
computational complexity. For this reason several algorithms with
more reduced complexity have been recently proposed. Max-log ap-
proximation detection is employed by the most common proposed
detectors. Optimal max-log approximation is achieved by “Single
Tree Search” (STS) [5] and “Repeated Tree Search” (RTS) [6] algo-
rithms, both based on the “Sphere Decoder” (SD) method. The com-
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putational complexity of these algorithms varies depending on the
channel and noise realizations and, even in the best cases, the RTS
algorithm complexity is high. The STS algorithm exhibits lower the
computational cost than the RTS algorithm, however, this algorithm
is still computationally very expensive when the number of anten-
nas or the constellation order is relatively high. Low complexity
solutions such as: “Soft Fixed Sphere Decoder” (SFSD) [7], “List
Sphere Decoder” (LSD) [8], and “Soft Output k-Best” [9] among
others, have been proposed, however these suboptimal search meth-
ods give a certain performance loss.

An intermediate approach between the optimal detector and
max-log approximation has been recently proposed based on “Par-
tial Marginalization” (PM), reported originally in [10] and improved
in [11], and the SUMIS [12] algorithm.

The SUMIS algorithm offers the best trade-off between exact
and approximate computation of the LLR values. The work pre-
sented in [12] considers only the constellations where a “symbol”
is equivalent to a “bit”. The present paper extends the SUMIS
algorithm to higher order constellations, furthermore, its main con-
tribution is an improvement of this algorithm, resulting in a low
performance degradation, nevertheless with less complexity than
original SUMIS algorithm. The key idea is to incorporate the use
of continuous constrained minimization techniques, also called box
optimization (BO) [13] [14], combined with the “Zero Forcing”
(ZF) algorithm to reduce the computational complexity of the orig-
inal SUMIS. The employed BO algorithm is described in [13] and
adapted in [15], obtaining an extremely tight bound on the solution
and good results with reduced complexity. Through the rest of the
paper, we will refer to this modification as SUMIS-BO detector.

The rest of this paper is organized as follows. In section 2, the
MIMO system model is presented first (subsection 2.1) and then a
brief review of previous detectors algorithms (subsection 2.2). The
modifications proposed to the SUMIS algorithm and the simulation
results are presented in section 3 and 4 respectively. Finally conclu-
sions are given in Section 5.

2. BACKGROUND

2.1. System Model

Throughout this paper, we consider the real MIMO system model,
using nT transmit and nR receive antennas with nT ≤ nR. At the
transmitter, the information bits are encoded, interleaved and then
mapped to symbols. Each symbol sj is taken independently from
the M -ary constellation Ω. The symbol contains k = log2(M) en-
coded and interleaved bits. The corresponding bits are denoted by
sj,b, where the indices refer to the bth bit associated with the jth
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symbol. At each signaling period, the relation between the transmit-
ted symbol vector, s ∈ RnT , and the associated received vector, y ∈
RnR , can be expressed as

y = Hs+ v, (1)

where H ∈ RnR×nT denotes a fading channel matrix with indepen-
dent elements hj,i ∼ N (0, 1) and it is assumed to be perfectly
known by the receiver. Vector v ∼ N (0, No

2
I) denotes an additive

Gaussian noise (AWGN). Since separable complex value constella-
tion can be considered (quadrature amplitude modulation (QAM)),
we can easily rewrite the real system model (1) from the equivalent
complex model.

At the receiver, the demodulator computes soft information in
form of LLR values for each of the encoded and interleaved bit sj,b
and is given by

Lj,b = log
P (sj,b = 1|y)
P (sj,b = 0|y) , (2)

which expresses how likely is the hypothesis that the sj,b bit was
equal to 1 or 0. Assuming equal a priori probabilities and using
Bayes’ theorem, Eq. (2) can be rewritten as

Lj,b = log

∑
sϵχ1

j,b
exp(− 1

N0
∥y −Hs∥2)∑

sϵχ0
j,b

exp(− 1
N0

∥y −Hs∥2)
, (3)

where χu
j,b denotes the set of possible transmitted vectors for which

sj,b bit is equal to u. The computational complexity of (3) grows
exponentially with nT and is polynomial with M . Thus, the exact
MIMO detection scheme becomes prohibitive. The most common
approach to cope with this limitation is the max-log approximation
[8] where

Lj,b ≈ min
sϵχ0

j,b

1

No
∥y −Hs∥2 − min

sϵχ1
j,b

1

No
∥y −Hs∥2. (4)

However, the max-log approximation does not lead to a com-
plexity reduction by itself. Eq (4) requires the computation of the
same metrics than (3). Nonetheless, it can be exploited to design
low-complexity algorithms [5]– [9]. In other works, some authors
propose an alternative to max-log aproximation [10]– [12] and con-
sider a new approach to the problem of computing (3). The basic
idea is to define the following partitioning model, which is based in
(1),

y = Hs+ n = [H H̃] [sT s̃T ]T + v = Hs+ H̃s̃+ v (5)

where H ∈ RnR×ns , H̃ ∈ RnR×(nT−ns), s ∈ Ωns and s̃ ∈
ΩnT−ns for fixed ns ∈ 1, · · · , nT .

The partitioned model carries intrinsically an optimal permuta-
tion of the columns of H that determines H and H̃. It is important to
note that this optimal permutation is difficult to find out and depends
on the selected detection method.

2.2. SUMIS algorithm review

The SUMIS [12] algorithm employs the partitioning model (5),
which is based on HTH as is explained in [12]. This algorithm is
composed by two main stages. A first approximation to the LLR
values is computed in Stage A and then, these approximate values
are used to compute new refined LLRs values in Stage B. Here we
give a brief review of SUMIS algorithm explained in [12]. It is
important to note that in [12] referring to a symbol is equivalent to

a bit, which is not the case here, since we extend the algorithm to
higher-order constellations.

Stage A: The algorithm starts with the partitioned model (5) defining
the new model as

y = Hs+ e (6)

where e = H̃s̃ + v is a Gaussian stochastic vector e ∼ N (0,Q)

with Q = H̃H̃T + No
2
I. Using the following operator ∥x∥2Q

,xTQ−1x, we compute the approximate λj,b LLR as

λj,b = log

∑
sϵχ0

j,b
exp(− 1

2
∥y −Hs∥2Q)∑

sϵχ1
j,b

exp(− 1
2
∥y −Hs∥2Q)

(7)

Stage A is performed for all bits b = 1, · · · , k in all symbols
j = 1, · · · , nT .

Stage B: In the second stage, the interfering vector s̃ is sup-
pressed in (6) and then the LLR values are computed again over a
purified model. In this context, the new model is given by

y′ , y − H̃E{s̃|y} ≈ Hs+ n′ (8)

where E{s̃|y} is the conditional expected value of vector s̃, and
n′ v N (0,Q′) with Q′ , H̃Υ̃H̃T + No

2
I. Υ̃ is the conditional

covariance matrix of s̃ and can be computed by

Υ̃ = E{diag(s̃)2|y} −E{diag(s̃)|y}2 (9)

where diag(△) returns a diagonal matrix with the elements of △
vector on its diagonal.
Hence, the refined LLR values can be computed as

Lj,b ≈ log

∑
sϵχ0

j,b
exp(− 1

2
∥y′ −Hs∥2Q′)∑

sϵχ1
j,b

exp(− 1
2
∥y′ −Hs∥2Q′)

. (10)

3. SUMIS-BO ALGORITHM

The SUMIS algorithm previously explained provides a clear trade-
off between computational complexity and detection performance.
In [12] the algorithm considers only the constellations where a “sym-
bol” is equivalent to a “bit”, however in the previous section we have
given a brief summary of the algorithm extending the notation to
constellations which a “symbol” is not equivalent to a “bit”. For
these higher constellations, the conditional expected value E{sj |y}
of symbol sj with j = 1, · · · , nT should be computed as

E{sj |y} ,
∑
s∈Ω

sP (sj = s|y) ≈
∑
s∈Ω

sP (sj = s|y)|y=y

=
∑
s∈Ω

s

k∏
b=1

1

1 + e(−2sj,b+1)λj,b
. (11)

The SUMIS algorithm computes the λj,b in Stage A using (7),
where the number of terms in the summation over s is kns . This
implies that SUMIS algorithm has to compute the term exp(− 1

2
∥y−

Hs∥2Q) a number of times kns × nT × k to compute the total λj,b

values.
SUMIS-BO algorithm proposes to reduce the complexity of this

part, computing approximate λj,b values, not the exact ones. These
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SUMIS\SUMIS-BO M = 4 M = 16 M = 64

nT = 8 128\32 2048\64 10368\96
nT = 16 256\64 4096\128 20736\192
nT = 24 384\96 6144\192 31104\288

Table 1: Number of terms 1
2
(∥y−Hs∥2Q) that SUMIS\SUMIS-BO

has to compute for ns = 3.

values are not the final LLRs but are employed in an interference
suppression mechanism in Stage B.

In the SUMIS-BO, we employed max-log approximation and a
reduced complexity technique to compute the λj,b values using (4).
The algorithm finds a good approximation of minsϵχ0

j,b
∥y −Hs∥2

and minsϵχ1
j,b

∥y −Hs∥2, which we call as s0 and s1 respectively.
Once s0 and s1 have been computed, the estimated λjb can be cal-
culated by a slight modification of (4) given by

λjb =
1

2
(∥y −Hs0∥2Q − ∥y −Hs1∥2Q). (12)

In this case to compute the λj,b values we only need to com-
pute two terms for the total nT × k LLR values. In Table 1 we can
see the number of terms that we have to compute for SUMIS and
SUMIS-BO using different system parameters. Thus, it is clear that
the number of operations to perform the computation of λj,b values
is drastically reduced.

Algorithm 1 Stage A SUMIS-BO pseudo-code
1: Input: H , y, k and ns

2: for j = 1 to nT do
3: Decide a partitioning in (5).
4: Calculate ŝ in (3).
5: for b = 1 to k do
6: Apply BO if (3) is outside the constellation.
7: Calculate λj,b using (4).
8: end for
9: Calculate E{sj |y} using (11).

10: end for

As we can see in the simulation result, the method employed
in this calculation affects very slightly to the final result. The key of
this technique to keep a good performance is the use of box optimiza-
tion (BO) method. The complete explanation of the BO algorithm is
complex and extensive and it can not be detailed here. Details of this
algorithm and its good performance in MIMO detection systems can
be found in [15].
Modified Stage A: In this work the main idea is to employ the BO
method combined with the “Zero Forcing” (ZF) algorithm to com-
pute s0 and s1 in the Stage A. Firstly the linear detector ZF is com-
puted by

ŝ = H
−1

y. (13)

The vector obtained after this process ŝ, known as ZF estimator,
is a meaningful starting point for the BO algorithm. ZF estimate
requires a matrix inversion which can be very complex for higher
antenna dimension. However, the number of columns of H is given
by ns, which it is relatively low. For this reason, we can use the QR
decomposition of the real H matrix and compute the ZF estimation
of the equivalent problem. In this case, the matrix inverse in it will be
of size ns×ns, avoiding the problem for higher antenna dimension.
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Fig. 1: FER as function of Eb/N0 with different system sizes and
constellation orders.

It was shown that if any component is outside of the box that
delimits the constellation, we can improve the accuracy of the ZF
estimator by applying the BO method. Then, the new estimated vec-
tor is quantized to the nearest element of the constellation. On the
other hand, in cases where all components of the ZF estimator are
within the constellation, the BO method is not applied and the com-
ponents of the ZF estimator are rounded to the nearest element of
the constellation. It is important to note that the constellation used
for the quantizing the ZF and BO estimation is restricted, using only
the points of the constellations with the corresponding bit equal to
one or zero, which depends on whether we calculate s1 or s0 respec-
tively. Once s0 and s1 have been computed, the estimated λjb can
be calculated using (12).

The Stage A of the SUMIS-BO algorithm is summarized in Al-
gorithm 1 with generic pseudo-code. The Stage B remains equal than
the SUMIS algorithm explained in [12].

4. SIMULATION AND ANALYSIS

We estimate the Bit Error Rate (BER) by means of Monte Carlo
simulations varying the signal-to-noise ratio, defined as Eb/N0.
Eb is the transmitted energy per uncoded bit. A rate 1/2 LDPC
code of codeword size 1296 bits is also used. The LDPC encod-
ing and decoding scheme comes from the IEEE 802.11n wireless
LAN standard; and some software tools have been download from
http://www.csl.cornell.edu/vstuder/software ldpc.html. The se-
lected decoding option is the sum-product algorithm. There is no
iteration between the detector and the decoder, and the transmitted
symbols are assumed to be uniformly distributed. We simulate 4×4,
8× 8, 12× 12 and 24× 24 complex MIMO systems with M -QAM
constellation, where M is {16, 64}, {4, 16, 64}, {4, 16, 64} and
{4, 16} respectively. The number ns over which the partitioning
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Fig. 2: Flops as function of Eb/N0 with different system sizes and
constellation orders.

nT \ M 4 16 64

8 29.7% 47.7% 49.7%
16 27.9% 47.5% 49.7%
24 27% 47.5% 49.7%
48 26% 47.2% 47.2%

Table 2: Percentage of flops improvement of SUMIS-BO with re-
spect to SUMIS.

model is done, is equal to 3 since in [12] this value offers a well
defined performance-complexity tradeoff.

4.1. Simulation Setup

In order to evaluate our proposal, we have compared SUMIS-BO
algorithm with the original SUMIS algorithm. Since the SUMIS
method in [12] has been compared with others algorithms like PM
[10], SFSD [7] or STS [5], we omit plotting its performance and
complexity curves. The observation that SUMIS and SUMIS-BO in
this work give better performance than the max-log based algorithms
is relevant, because the most important competitors to SUMIS are
based on the max-log approximation.

Fig. 1 shows a comparison between the algorithms SUMIS and
SUMIS-BO with different number of antennas and constellation or-
ders. The results in the figures clearly illustrate that for 4−QAM the
SUMIS-BO detector performs equals to SUMIS for all Eb/N0 val-
ues and all cases. Note however, that for higher constellation orders
the SUMIS-BO achieves slightly worse behavior regarding SUMIS
algorithm. It is important to note that this performance loss is negli-
gible and in contrast, the improvement in the computational cost of
the algorithm is very high.

The computational cost is represented in Fig. 2 in terms of
flops. For this purpose, the experiments were carried out varying
the Eb/N0 from 0 to 14, detecting 100 signal for each Eb/N0 and
the average number of flops were recorded. Table 2 shows that the
SUMIS-BO algorithm reaches large advances over the SUMIS algo-
rithm in terms of flops, especially for problems with higher constel-

lations orders. Another important issue is the fixed complexity over
Eb/N0 that is exhibited.

5. CONCLUSION

We have proposed an improved version of the SUMIS MIMO de-
tection method, SUMIS-BO. The proposed algorithm shows a slight
performance loss in some cases, however SUMIS-BO reduces dras-
tically the computational cost of the SUMIS for all the studied prob-
lem sizes and retains the fixed complexity of the SUMIS method.
In conclusion, the proposed algorithm provides a very good tradeoff
between complexity and performance.
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[12] M. Cı̂rkić and E. G. Larsson, “SUMIS: Near-optimal soft-
in soft-out MIMO detection with low and fixed complexity,”
Signal Processing, IEEE Transactions on, vol. 62, no. 12, pp.
3084–3097, June 2014.

3824



[13] A. Björck, “Numerical methods for least squares problems,”
Philadelphia: SIAM, 1996.

[14] M. Stojnic, H. Vikalo, and B. Hassibi, “Speeding up the Sphere
Decoder with H∞ and SDP inspired lower bounds,” IEEE
Transactions on Signal Processing, vol. 56, no. 2, pp. 712–726,
2008.

[15] V.M. Garcia-Molla, A. Vidal, A. Gonzalez, and S. Roger,
“Maximum likelihood detection through sphere decoding com-
bined with box optimization,” Signal Processing, Elsevier, vol.
98, pp. 287–294, 2014.

3825


