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Abstract— In this paper, we propose a blind channel estima-
tion algorithm for amplify-and-forward two-way relay networks
(AF-TWRN). The orthogonal frequency division multiplexing
(OFDM) modulation is adopted for frequency selective channel.
The channels are estimated in two steps. First the cascaded
channel causing the self-interference is estimated using a pro-
posed power reduction method. Then the other cascaded channel
from source to destination is estimated by subspace method.
Closed form formulas are derived and the numerical results are
provided.

Index Terms—blind channel estimation, orthogonal frequency
division multiplexing (OFDM), two-way relay network (TWRN).

I. INTRODUCTION

Research on wireless relay networks becomes popular re-
cently. In particular, the two-way relay network (TWRN) has
drawn a lot of attention because its overall communication
rate is approximately twice of that achieved in the one-way
relay network (OWRN) [1]. In this paper, we study the channel
estimation problem in amplify-and-forward (AF) TWRN [2].
Many methods have been proposed for channel estimation in
AF-TWRN. These methods can be divided into two groups:
data-aided [3]-[6] and non data-aided (blind) [7]-[10]. This
paper focuses on blind estimation. In [7], the authors propose a
maximum likelihood (ML) approach to estimate the flat-fading
channels blindly, but the transmitted signals are limited on
constant modulus modulation. [8] finds a closed form solution
and thus provides a low-complexity ML algorithm. For non-
constant modulus modulation, [9] gives an iterative algorithm,
which is based on the maximum a posteriori (MAP) approach
and requires a large number of received blocks. In [10], the
authors consider the frequency selective environment. They
apply a non-unitary linear precoding at both terminals and
derive a blind channel estimation algorithm from second-order
statistics of the received signals. However, the use of non-
unitary linear precoding leads to degradation in bit error rate
(BER) performance.

In this paper, we develop a blind channel estimation algo-
rithm for TWRN under orthogonal frequency division multi-
plexing (OFDM) modulation. Our method contains two steps.
The first step is to estimate the cascaded channel causing the
self-interference. Since the terminal knows its own transmitted
signal, we propose a method based on power reduction to
estimate the channel. The second step is to estimate the
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Fig. 1: System configuration for two-way relay network

cascaded channel from source to destination. We utilize the
subspace method [11]. Closed form formulas for these two
cascaded channel estimates are derived. Simulation is provided
to show the merit of the proposed method.

The rest of this paper is organized as follows. The system
model for OFDM-based AF-TWRN is introduced in Section II.
Section III describes the proposed algorithm for blind channel
estimation. Simulation results are presented in Section IV and
concluding remarks are drawn in Section V.

Notation: In this paper, E{x} means the statistical ex-
pectation of the random variable x. The symbols AT , A∗,
and A† denote the transpose, the complex conjugate, and
the conjugate-transpose of matrix A respectively. ‖A‖F is
the Frobenius norm of matrix A. Im is the m × m iden-
tity matrix, whereas 0 represents an all-zero matrix with
appropriate dimension.  =

√
−1 is the imaginary unit.

Tm(c) is an m × (m + n − 1) Toeplitz matrix with first
column [cn,01×(m−1)]

T and first row [cn, . . . , c1,01×(m−1)],
and T̃m(c) is an (m+ n− 1)×m Toeplitz matrix with first
column [c1, . . . , cn,01×(m−1)]

T and first row [c1,01×(m−1)],
where c = [c1, c2, . . . , cn]T is an arbitrary vector.

II. SYSTEM MODEL

Consider a TWRN with two terminal nodes T1 and T2,
and one relay node R, as shown in Fig. 1. Each node has one
antenna which cannot transmit and receive simultaneously. The
channel from Ti to R is denoted as fi = [fi,0, fi,1, . . . , fi,L]T ,
whereas the one from R back to Ti is denoted as gi =
[gi,0, gi,1, . . . , gi,L]T for i = 1 and 2. For notational simplicity,
we assume that the lengths of f1, f2, g1, and g2 do not exceed
L + 1.1 Similar to most other algorithms, we assume that
the channels do not change when the channel estimation is
performed.

A. OFDM modulation at terminals

Denote the kth OFDM block from Ti as s
(i)
k =

[s
(i)
k,0, s

(i)
k,1, . . . , s

(i)
k,N−1]T , where N is the OFDM block length.

1The proposed method can be applied to the more general case of different
channel lengths by simply using an appropriate cyclic prefix length.
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The corresponding time-domain signal block is obtained from
the normalized inverse discrete Fourier transform (IDFT) as

x
(i)
k = W†s

(i)
k =

[
x
(i)
k,0 x

(i)
k,1 · · · x

(i)
k,N−1

]T
, (1)

where W is the N × N normalized DFT matrix with the
(m,n)th entry given by 1√

N
e−2πmn/N . To maintain the

subcarrier orthogonality during the overall transmission, we
propose to add a cyclic prefix (CP) of length 2L. Define
x
(i)
k,cp = [x

(i)
k,N−2L, . . . , x

(i)
k,N−1]T . The signal sent out from

Ti is expressed as [ x
(i)T
k,cp x

(i)T
k

]T for i = 1 and 2.

B. Relay processing
The relay R receives the signal

rk =


rk,0
rk,1

...
rk,N+2L−1

 =

2∑
i=1

TN+2L(fi)

 x
(i)
k−1,isi

x
(i)
k,cp

x
(i)
k

+nk,r,

(2)
where x

(i)
k−1,isi = [x

(i)
k−1,N−L, . . . , x

(i)
k−1,N−1]T is the term

which causes the inter-symbol interference (ISI). Moreover,
each element in the noise vector nk,r is assumed to be inde-
pendent and identically distributed (i.i.d.) zero-mean complex
white Gaussian, with variance σ2

nr
.

We assume that the relay R employs the amplify-and-
forward scheme. It scales rk by the factor of

α =

√
Pr

E{‖rk‖2F }
=

√
Pr

‖f1‖2Fσ2
1 + ‖f2‖2Fσ2

2 + σ2
nr

, (3)

where Pr is the average transmission power of R. In the second
equality, we have made the assumptions that the transmitted
signals x

(1)
k and x

(2)
k are uncorrelated with variances σ2

1 and σ2
2

respectively. Then the relay broadcasts αrk to both terminals.

C. Signal reformulation at terminals
Due to symmetry, we only illustrate the processing at T1.

The (N + 2L)× 1 vector received at T1 can be expressed as

yk =


yk,0
yk,1

...
yk,N+2L−1

 = TN+2L(g1)

[
αrk−1,isi
αrk

]
+ nk,t,

(4)
where rk−1,isi = [rk−1,N+L, . . . , rk−1,N+2L−1]T , and each
element in the noise vector nk,t is assumed to be i.i.d. zero-
mean complex white Gaussian, with variance σ2

nt
. Substituting

(2) into (4), we have

yk=TN+2L(h1)

 x
(1)
k−1,cp

x
(1)
k,cp

x
(1)
k

+TN+2L(h2)

 x
(2)
k−1,cp

x
(2)
k,cp

x
(2)
k

+nk,e,

(5)
where h1 = α(g1 ∗ f1) and h2 = α(g1 ∗ f2) with ∗ being the
linear convolution between two vectors, and nk,e denotes the
equivalent noise. Note that nk,e is not white. However, when
N � L, it can be approximated as white noise.

D. Data detection at terminals

After removing the first 2L elements of yk in (5), we obtain
a vector of size N :

ȳk = TN (h1)

[
x
(1)
k,cp

x
(1)
k

]
+ TN (h2)

[
x
(2)
k,cp

x
(2)
k

]
+ n̄k,e, (6)

where n̄k,e is the last N elements of nk,e. If the cascaded
channel h1 is known to T1, then the first term on the right-
hand side of (6) can be removed since T1 knows its own
signal x

(1)
k . If h2 is known, the regular OFDM detection can

be efficiently performed using fast Fourier transform. So T1

can recover the data from T2 if both h1 and h2 are available.
Hence, our goal is to estimate h1 and h2. Below we will show
how to blindly estimate these two cascaded channels from the
received signal yk.

III. PROPOSED METHOD FOR CHANNEL ESTIMATION

In this paper, we assume that x
(1)
k and x

(2)
k are uncorrelated.

Moreover, the transmitted signals and the noises are uncorre-
lated as well. Under these two assumptions, we propose an
algorithm to estimate h1 and h2 blindly.

A. The estimation of h1

To estimate the (2L+1)×1 vector h1, our method is based
on power reduction. Define a cost function

J(ĥ1) = E{

∥∥∥∥∥ȳk −TN (ĥ1)

[
x
(1)
k,cp

x
(1)
k

]∥∥∥∥∥
2

F

}, (7)

where ȳk is the N × 1 vector in (6) and ĥ1 is an estimate of
h1. Substituting (6) into (7) and simplifying the expression,
we have

J(ĥ1) = N(σ2
1‖h1 − ĥ1‖2F +σ2

2‖h2‖2F +|α|2σ2
nr
‖g1‖2F +σ2

nt
)

≥ N
(
σ2
2‖h2‖2F + |α|2σ2

nr
‖g1‖2F + σ2

nt

)
. (8)

Obviously, the cost function has the minimum if and only if
‖h1 − ĥ1‖2F = 0, or equivalently, ĥ1 = h1. Assume that T1

has collected K blocks. Then (7) can be approximated as

J̄(ĥ1) =
1

K

K−1∑
k=0

∥∥∥∥∥ȳk −TN (ĥ1)

[
x
(1)
k,cp

x
(1)
k

]∥∥∥∥∥
2

F

=
1

K

K−1∑
k=0

∥∥∥ȳk −√NW†D(s
(1)
k )W2L+1ĥ1

∥∥∥2
F
, (9)

where D(s
(1)
k ) is a diagonal matrix with the elements of s

(1)
k

on the main diagonal, and W2L+1 is the first 2L+ 1 columns
of the DFT matrix W. Define that

y =
[

ȳT0 ȳT1 · · · ȳTK−1
]T

(10)

and

S =
[

D(s
(1)
0 ) D(s

(1)
1 ) · · · D(s

(1)
K−1)

]T
. (11)

Then (9) can be rewritten as

J̄(ĥ1) =
1

K

∥∥∥y −√N(IK ⊗W†)SW2L+1ĥ1

∥∥∥2
F
, (12)
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where the symbol ⊗ denotes the Kronecker product. The least
squares solution of (12) can be calculated as

ĥ1 =
1√
N

(
W†

2L+1S
†SW2L+1

)−1
W†

2L+1S
†(IK ⊗W)y.

(13)
When K is large enough, we have S†S ≈ Kσ2

1IN . In this
case, (13) can be approximated as

ĥ1 ≈
1√

NKσ2
1

W†
2L+1

K−1∑
k=0

(s
(1)
k )∗ � (Wȳk), (14)

where the symbol � denotes the Hadamard product. Notice
that there is no scalar ambiguity in the estimation of h1 since
s
(1)
k and ȳk are known at T1.

B. The estimation of h2

In order to estimate h2, we first remove the self-interfering
signal from the received vector. Define

zk = yk −TN+2L(ĥ1)

 x
(1)
k−1,cp

x
(1)
k,cp

x
(1)
k

 . (15)

Assuming that the estimation of h1 is perfect (i.e. ĥ1 = h1),
from (5) and (15) we have

zk = TN+2L(h2)

 x
(2)
k−1,cp

x
(2)
k,cp

x
(2)
k

+ nk,e. (16)

Note that the vector zk is simply the received vector in an usual
OFDM system with channel h2 and transmitted vector x

(2)
k .

Many blind estimation methods have been proposed for the
estimation of h2 from zk. Below, we will adopt the subspace
based algorithm in [11]. Define the re-modulated vector z̃k =
[zk−1,2L, . . . , zk−1,N+2L−1, zk,0, . . . , zk,2L−1]T , where zk,i is
the ith entry of zk. Then we construct the vector

vk = zk − z̃k. (17)

Substituting (5) and (15) into (17), we have

vk = T̃N (h2)(

[
x
(2)
k,cp

x
(2)
k,up

]
− x

(2)
k−1) + ηk , T̃N (h2)dk + ηk,

(18)
where x

(2)
k,up is the first N − 2L elements of x

(2)
k and ηk is

color noise. Therefore, we carry out the whitening process [11]
to get R

−1/2
w vk, where

R−1/2w =

 c1I2L 0 c2I2L
0 1√

2
IN−2L 0

c2I2L 0 c1I2L

 (19)

with c1 =

√
2/3+
√

1/3

2 and c2 =

√
2/3−
√

1/3

2 . After whiten-
ing, the covariance matrix of R

−1/2
w vk can be represented as

E{R−1/2w vkv
†
kR
−1/2
w } =R−1/2w T̃N (h2)RdT̃

†
N (h2)R−1/2w

+ σ2
ne

IN+2L, (20)

where Rd = E{dkd†k} is the covariance matrix of dk defined
in (18) and σ2

ne
is the average power of nk,e. Utilizing

eigenvalue decomposition, (20) can be computed as

E{R−1/2w vkv
†
kR
−1/2
w } = UsΣU†s + σ2

ne
UoU

†
o, (21)

where Σ is an N ×N diagonal matrix and the (N + 2L)×N
matrix Us spans the signal subspace. On the other hand, the
(N + 2L)× 2L matrix Uo spans the noise subspace. That is,

U†oR
−1/2
w T̃N (h2) = 0. (22)

Define that Ji = [ 0(2L+1)×i I2L+1 0(2L+1)×(N−1−i) ]T

for i = 0, 1, . . . , N − 1. Then (22) can be rewritten as

Uh2 = 0, (23)

where U , [JT0 R
−1/2
w U∗o, . . . ,J

T
N−1R

−1/2
w U∗o]

T . Hence, we
can estimate h2 (up to a scalar ambiguity) by calculating the
eigenvector corresponding to the smallest eigenvalue of U†U.

In summary, our algorithm is as follows.

1) Estimate h1 by (14).
2) Eliminate the interference from T1 by (15).
3) Calculate R

−1/2
w vk by (17) and (19) and obtain the (N+

2L) × 2L matrix Uo spanning the noise subspace by
eigenvalue decomposition.

4) Estimate h2 (up to a scalar ambiguity) by (23).

C. Multiple relay nodes

The extension to the case of multiple relay nodes is
straight forward. Suppose that we have M relay nodes
R1,R2, . . . ,RM . Let the channels from Ti to Rm be denoted
as f

(m)
i and the channels from Rm to Ti be denoted as g

(m)
i .

Then (2) becomes

r
(m)
k =

2∑
i=1

TN+2L(f
(m)
i )

 x
(i)
k−1,isi

x
(i)
k,cp

x
(i)
k

+ n
(m)
k,r , (24)

where r
(m)
k is the signal received by relay node Rm and n

(m)
k,r

is the noise at Rm. When T1 receives the signal, (4) becomes

yk =

M∑
m=1

TN+2L(g
(m)
1 )

[
αmr

(m)
k−1,isi

αmr
(m)
k

]
+ nk,t, (25)

where αm is the scalar multiplied by relay node Rm for power
normalization. Combining (24) with (25), the received vector
at T1 continues to have the form given in (5), but now the
cascaded channels are h1 =

∑M
m=1 αm(g

(m)
1 ∗f (m)

1 ) and h2 =∑M
m=1 αm(g

(m)
1 ∗ f

(m)
2 ). Hence, the above methods can be

applied to the case of multiple relay nodes.

D. Comparison with an existing work

A blind channel estimation algorithm in OFDM-based
TWRN was proposed in [10]. Comparing our method with

3818



−5 0 5 10 15 20 25 30 35 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

M
S

E

 

 
h

1
 by (14)

h
2
 by (23)

Liao (θ=0.1)
Liao (θ=0.5)
Liao (θ=0.9)

Fig. 2: Comparison of the MSE

that in [10], there are two major differences. One is that [10]
requires a precoding matrix P, where

PP† =


1 θ · · · θ

θ 1
. . .

...
...

. . . . . . θ
θ · · · θ 1

 .
A necessary condition on θ is − 1

N−1 ≤ θ ≤ 1. In other
words, the kth transmitted vector from Ti is the precodded
vector Ps

(i)
k instead of s

(i)
k . Notice that for θ 6= 0, P is not an

unitary matrix. The channel noise can be amplified when the
receiver performs the operation P−1. It was shown in [10] that
when θ increases from 0 to 1, the mean square error (MSE) of
channel estimate decreases. Due to noise amplification, larger
θ does not necessarily yield smaller BER, so there exists
a compromise between channel estimation error and BER.
Another difference between our method and [10] is that there
is a 2× 2 ambiguity matrix in [10], or equivalently, there are
four ambiguity scalars. On the other hand, there is only one
ambiguity scalar in our algorithm.

IV. SIMULATION RESULTS

In the simulation, we consider a TWRN with one relay node.
The channel taps fi,l and gi,l are generated as independent and
identically distributed zero-mean complex Gaussian random
variables. The order of these channels is L = 8. The channels
are normalized so that ‖f1‖2F = ‖f2‖2F = ‖g1‖2F = ‖g2‖2F =
1. The channel does not change while the channel estimation is
performed. The channel noise is additive white Gaussian noise
(AWGN), and the transmission symbols are QPSK. The size of
the DFT matrix is N = 64, and the length of CP is 2L = 16.
The total number of Monte-Carlo trials is Mc = 2000, and
the number of received blocks is K = 500. In all plots, we
set σ2

1 = σ2
2 and σ2

nr
= σ2

nt
. The signal-to-noise ratio (SNR)

is defined as σ2
2/(α

2σ2
nr

+ σ2
nt

).
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Fig. 3: Comparison of the BER

We compare the performances of our method with the
method proposed by Liao et al. in [10]. As mentioned in
Section III-D, Liao’s algorithm has a compromise between
channel estimation error and BER. The parameter θ in Liao’s
algorithm is set to 0.1, 0.5, and 0.9. From [10], it is founded
that θ = 0.5 yields a good BER performance. Fig. 2 shows the
MSE performances. Since the MSEs of h1 and h2 by Liao’s
algorithm are the same, we plot one MSE curve only. From
the figure, we see that as θ increases from 0.1 to 0.9, the MSE
of Liao’s algorithm decreases. For the estimation of h1, our
method is better than Liao’s methods for θ = 0.1 and 0.5,
but worse than one for θ = 0.9. As we will see in Fig. 3,
the BER performance for θ = 0.9 is not good due to severe
noise amplification. For h2, Liao’s method is better at low
SNR whereas our method is better at high SNR.

In Fig. 3, we show BER performances. Zero-forcing equal-
izers are used at the receiver. The “Perfect Compensation”
represents the case that the channel taps are perfectly known
at the receiver. It is seen that Liao’s method has the best BER
performance when θ is set as 0.5. Though the MSE is the
smallest when θ = 0.9, its BER performance is not good due
to the noise amplification problem of the precoding matrix P.
From Fig. 3, we see that the proposed algorithm outperforms
Liao’s methods when SNR ≥ 10 dB, and the performance of
our method is close to the perfect compensation.

V. CONCLUSIONS

In this paper, we propose a blind channel estimation in
OFDM-based AF-TWRN. The first cascaded channel h1 is
estimated by the power reduction method whereas the second
cascaded channel h2 is estimated by the subspace method.
Simulation results show that our method yields a satisfactory
performance.
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