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ABSTRACT

The paper proposes an on-line distributed implementation of the par-
ticle filter (DPF) for applications, where the sensing and consen-
sus time scales are the same. We are motivated by state estimation
problems in large, geographically-distributed agent/sensor networks,
where bandwidth constraints limit the number of information trans-
fers between neighbouring nodes. As an alternative to consensus
strategies often used by the DPF, we propose a diffusive framework
to eliminate the need of running the consensus step. In our Monte
Carlo simulations, the proposed diffusion based DPF (D/DPF) out-
performs the state-of-the-art consensus based DPF approaches in en-
vironments with limited bandwidth or/and intermittent connectivity.

Index Terms— Consensus algorithms, Distributed particle fil-
ters, Diffusion algorithms, Target tracking, Intermittent connectivity.

1. INTRODUCTION

The paper designs distributed particle filter (DPF) implementations
[1, 2] for multisensor navigation and tracking applications, where
sensing and consensus time scales are the same, i.e., each node
communicates its localized intermediate state estimates only once
within its immediate neighbourhood between two successive obser-
vations. Existing DPF approaches are often based on two different
time scales: (i) The sensing time scale for the collection of measure-
ments in the sensor network, and; (ii) The consensus time scale to
attain consistency in the local filters’ estimates across the network.
Such consensus-based distributed implementations [3, 4] require
the consensus step to converge between two consecutive observa-
tions. In the context of large, geographically-distributed agent/sensor
networks (AN/SN), communication delays and/or intermittence in
network connectivity prevent the convergence of the consensus step
leading to an accumulation of the observed data and causing these
DPF implementations to fail. We propose an alternative DPF ap-
proach based on the diffusive fusion strategies [5], which eliminates
the need of the consensus step. Another advantage of diffusive fu-
sion is its robustness to changes in the underlying network topology.
Reference [6] shows that diffusive strategies outperform consensus
approaches for distributed estimation in adaptive AN/SN systems.
Surprisingly, diffusive fusion is limited to distributed Kalman filter
based estimators for systems with linear dynamics and have not yet
been fully investigated for non-linear systems. The paper addresses
this gap by introducing a diffusive framework for the DPF.
Prior Work: In systems with non-linear dynamics, the limitations
of the Kalman filter (lack of optimality, linearization error, and slow
convergence) are quite well known. Consequently, there is a surge
of interest in developing DPF implementations [7]-[16] for AN/SN
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with non-linear dynamics. Existing DPF approaches run localized
filters to derive local state estimates. Consensus fusion [3, 4], used
to achieve consistency in the local DPF estimates, is iterative in na-
ture, where each node begins with a set of local information (e.g., lo-
cal state estimates). At each consensus iteration, data is interchanged
between neighbouring nodes, which is then used to update the local
information. This assimilation process continues until the consen-
sus parameters converge, e.g., to the average of the local values. The
performance of the consensus-based approaches depends on the con-
vergence of the consensus step [23] within successive observations,
thus, precluding their application from real-time recursive estimation
and adaptation [6] in AN/SN with fast sensing time scale.

In [13, 14], we have previously proposed a consensus/fusion
based distributed implementation of the particle filter (CF/DPF) that
introduces a separate consensus filter (referred to as the fusion filter)
to derive the global posterior, thereby reducing the dependency of the
CF/DPF on the convergence of the consensus step. In [15, 16], we
developed a novel class of consensus + innovation DPF implemen-
tations to further reduce the filter’s dependence on the convergence
of the consensus step, i.e., each node runs a restricted number of
consensus iterations between two consecutive observations without
requiring the consensus step to converge. In both implementations,
the estimation error remains bounded. In several practical applica-
tions, the consensus and sensing time steps are often equal [24]-[28],
i.e., each node can communicate only once with its neighbouring
nodes between two successive observations. Spurred by this consid-
eration, the paper focuses on the design of a DPF implementation
based on the diffusive strategies [29]-[32], which we refer to as the
D/DPF. The main contribution of this paper is to incorporate dif-
fusive fusion in the non-linear distributed estimation framework to
eliminate the need of the consensus step. The condition for achiev-
ing consensus between successive iterations of the localized particle
filter is no longer a requirement resulting in an on-line D/DPF imple-
mentation. Comprising of two steps, the proposed D/DPF approach
is not just an averaging approach. First, the centralized particle fil-
ter is partitioned into localized filters used to compute intermediate
localized estimates based on local observations. This step is called
the localized filtering step. Second, local nodes cooperate distribu-
tively within their neighbourhoods to improve the accuracy of their
intermediate localized estimates using a diffusive strategy focused
on sharing local observations. The second step is called the diffu-
sive fusion step that eliminates the need of achieving consensus be-
tween the local filters within two successive observations. Since ref-
erences [5, 6] have derived the improvements possible with diffusive
techniques as well as their convergence properties, the paper focuses
on designing diffusive approaches for distributed nonlinear filters.

The rest of the paper is organized as follows. Section 2 formu-
lates the problem and reviews both centralized and Gaussian particle
filters. Section 3 presents the proposed diffusive algorithm followed
by Monte Carlo results in Section 4. Section 5 concludes the paper.
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2. PROBLEM FORMULATION AND PARTICLE FILTER

The overall state-space model is given by

State Model: x(k)=f(x(k − 1)) + ξ(k) (1)

Observation Model:

 z
(1)(k)

...
z(N)(k)


︸ ︷︷ ︸

z(k)

=

 g
(1)(x(k))

...
g(N)(x(k))


︸ ︷︷ ︸

g(x(k))

+

 ζ
(1)(k)

...
ζ(N)(k)


︸ ︷︷ ︸

ζ(k)

(2)

for a sensor network comprising N nodes and observing a set of
nx state variables x = [X1, X2, . . . , Xnx ]T . The global observa-
tion vector is z = [z(1)T , . . . ,z(N)T ]T with z(l)(k) denoting the
observation at node l, (1 ≤ l ≤ N ), at time instant k. Symbol T
denotes transposition and {ξ(·), ζ(·)} are, respectively, the global
non-Gaussian uncertainties in the process and observation models.
Both state and observation dynamics {f(.), g(·)} can potentially be
non-linear functions.

The optimal Bayesian filtering recursion for iteration k is

P (x(k)|z(1 :k−1)) = (3)∫
P (x(k−1)|z(1 :k−1))P (x(k)|x(k−1))dx(k−1)

and P (x(k)|z(1 :k)) =
P (z(k)|x(k))P (x(k)|z(1 :k−1))

P (z(k)|z(1 :k−1))
(4)

with P (x(k)|x(k−1)) the transitional density based on (1). The
particle filter is based on the principle of sequential importance sam-
pling [1, 2], where the filtering distribution P (x(k)|z(1:k)) is repre-
sented by its samples (particles) {Xi(k)}Ns

i=1 derived from a proposal
distribution q(x(0:k)|z(1:k)) with normalized weights Wi(k) =
P (Xi(k)|z(1 : k))/q(Xi(0 : k)|z(1 : k)) associated with the parti-
cles. It implements the filtering recursions by propagating the parti-
cles Xi(k) and weights Wi(k), (1 ≤ i ≤ Ns), as

Xi(k) ∼ q(xi(k)|xi(0 :k−1),z(1 :k)) (5)

Wi(k) ∝ Wi(k − 1)
P (z(k)|Xi(k))P (Xi(k)|Xi(k−1))

q(Xi(k)|Xi(k−1),z(1 :k))
. (6)

A computationally attractive approximation of Eqs. (5) and (6) for
implementation is the Gaussian particle filter (GPF) [33], where
the posterior distribution p(x(k)|z(1 : k)) is approximated with a
Gaussian density whose mean and covariance are computed from a
weighted average of the particles. Contrary to the standard particle
filter [1, 2], the GPF does not require a resampling step reducing the
local computational complexity of the particle filter. In this paper,
we use diffusive strategies to implement a distributed GPF.

3. DIFFUSIVE PARTICLE FILTER

In the D/DPF, each node at iteration k implements a localized fil-
ter to compute an intermediate local estimate based on observations
limited to its immediate neighbourhood (Localized Filtering Step).
Local nodes then cooperate distributively with each other to improve
the accuracy of their intermediate localized state estimates (Diffusive
Fusion Step). Below, we explain these steps in more details.

3.1. Local Filtering Step

In the D/DPF, the local filter at node l computes an intermediate
state estimate of the entire state vector x(k) by running one local-

ized GPF. In computing the localized state estimates, communica-
tion is limited to the local neighbourhoods, i.e., node l forms a local-
ized state estimate by incorporating measurements recorded at those
nodes to which it is connected. In the distributed estimation frame-
work considered in this paper, two nodes are considered connected
if they can communicate directly with each other. The set of nodes
connected to node l is referred to as the neighbourhood of node l and
is denoted by ℵ(l). Following Reference [29], beside having access
to its local measurement, node l has access to the measurements of
its neighbouring nodes1. The collective set of measurements avail-
able at Node l is denoted by

Z(l)(k) = {z(i)(k) : i ∈ ℵ(l)}. (7)

The local filter at Node l computes a particle-based approximation of
the local conditional posterior p(x(k)|Z(l)(k)) defined as follows

p(x(k)|Z(l)(k)) =

np∑
i=1

W
(l)
i δ
(
x(k)− X(l)

i (k)
)
, (8)

where np is the number of individualized particles used by the local
filters. In reality, the number of local particles may vary within nodes
without affecting our implementation. The local intermediate state
estimate denoted by ψ(l)(k) at iteration (k ≥ 1) is defined as the
expected value of the posterior distribution p(x(k)|Z(l)(k)), i.e.,

ψ(l)(k)=E
{
x(k)|Z(l)(k)

}
=

∫
x(k)p(x(k)|Z(l)(k))dx(k), (9)

which is expressed in terms of the local particles as follows

ψ(l)(k) =

np∑
i=1

W
(l)
i (k)X(l)

i (k). (10)

Node l fuses its local intermediate state estimate ψ(l)(k) with those
of its neighbouring nodes using diffusive strategies to form its up-
dated local state estimate, denoted by x̂(l)(k). Assume all local fil-
ters are at steady-state at the end of iteration (k− 1), i.e., node l, has
computed x̂(l)(k) and its corresponding error covariance P (l)(k).
At iteration k, the local filtering step is then completed at each node
l, (1 ≤ l ≤ N ) based on the following sub-steps:

Sub-Step L1. Observation collection: Node l collects observations
made in its neighbourhood to form Z(l)(k), i.e., the collection of
measurements available in the local neighbourhood ℵ(l) of node l.

Sub-Step L2. Local state estimation: Node l computes the local state
estimateψ(l)(k) based on the collective observations available in its
neighbourhood as described next. First, the local GPF generates np

random particles from its local proposal distribution, i.e.,

X̃(l)
i (k) ∼ π(x(k)|Z(l)(1 : k)), (11)

where Z(l)(1 : k) = [Z(l)(1)T , . . . ,Z(l)(k)T ]T is the collection
of local observations from iteration (k = 1) to the current iteration.
Node l computes the mean µ̄(l)(k) and covariance Σ̄(l)(k) of its
predictive particles as follows

µ̄(l)(k)=
1

np

np∑
i=1

X̃(l)
i (k) (12)

and Σ̄(l)(k)=
1

np

np∑
i=1

(
µ̄(l)(k)− X̃(l)

i (k)
)(
µ̄(l)(k)− X̃(l)

i (k)
)T
. (13)

1Based on the unscented particle filter, an enhancement of the D/DPF
can be developed that eliminates the need for sharing localized observations
within local neighbourhoods. This will be the focus of our future work.
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Node l then updates the corresponding weights of its predictive par-
ticles as follows

W̃
(l)
i =

p
(
Z(l)(k)|X̃(l)(k)

) p(x(k)|x(k−1))︷ ︸︸ ︷
N [X̃(l)

i (k); µ̄(l)(k), Σ̄(l)(k)]

π
(
X̃(l)

i (k)|Z(l)(1 : k)
) , (14)

and normalize them as

W
(l)
i = W̃

(l)
i /

np∑
i=1

W̃
(l)
i . (15)

In Eq. (14), N [·] denotes the Gaussian distribution with mean and
covariance specified within its parenthesis. Further, Node l updates
its local intermediate state estimate and corresponding covariance as

ψ(l)(k)=

np∑
i=1

W
(l)
i X̃(l)

i (k) (16)

and P (l)(k)=

np∑
i=1

W
(l)
i

(
ψ(l)(k)− X̃(l)

i (k)
)(
ψ(l)(k)− X̃(l)

i (k)
)T.(17)

Implemented at node l, (1 ≤ l ≤ N ), the local GPF approximates
the localized filtering density with a single Gaussian as follows

p(x(k)|Z(l)(1 : k)) = N
(
x(k);ψ(l)(k),P (l)(k)

)
. (18)

This completes the local filtering step of the proposed D/DPF. Next,
we present our diffusive fusion strategy where each node updates its
local state estimates by collaborating with its neighbouring nodes.

3.2. Diffusion Step

The second step is based on local collaboration, where node l, (1 ≤
l ≤ N ), fuses its local intermediate estimate ψ(l)(k) with that of its
neighbouring nodes as follows

x̂(l)(k) =
∑

j∈ℵ(l)
α(j,l)ψ(j)(k), (19)

such that if we collect the nonnegative weights α(j,i) into a N ×N
matrixA, the weights α(j,l) satisfy the following properties

(i) α(j,l) ≥ 0; (ii)AT1 = 1, and; (iii) α(j,l) = 0 if j /∈ ℵ(l), (20)

where 1 is a vector of size N with all entries equal to one. Eq. (20)
implies that the weights on the links arriving at a single node add up
to one, which is equivalent to saying that the matrix is left-stochastic.
Moreover, if two nodes are not connected, then their corresponding
entry is zero. Diffusive matrix A can be designed using covariance
intersection [31] or updated adaptively as explained in [32]. A simple
approach for choosing the diffusion matrix is to assign a weigh to
each node according to the cardinality of its neighbourhood, i.e.,

α(j,l) =

{
α(l)∆(l) if j ∈ ℵ(l)
0 otherwise

(21)

where ∆(l) is the connectivity degree of node l (i.e., cardinality of
ℵ(l)) and α(l) is a normalization constant to ensure that AT1 = 1.
Through diffusive fusion, the GPF implemented at node l, (1 ≤ l ≤
N ), forms a Gaussian approximation of the posterior distribution as

p(x(k)|z(k)) = N
(
x(k); x̂(l)(k),P (l)(k)

)
. (22)

Algorithm 1 D/DPF IMPLEMENTATION

Input: {X(l)
i (k − 1),W

(l)
i (k − 1)}np

i=1 and z(l)(k).
Output: {X(l)

i (k),W
(l)
i (k)}np

i=1, x̂(l)(k) and P (l)(k).

Localized GPFs: At iteration k, Node l, (1 ≤ l ≤ N), updates its
particle set as follows:

L1. Local Observation Collection: Form Z(l)(k) by collecting
z(j)(k), (j ∈ ℵ(l)).

L2. Local Predictive Particle Generation: Sample a new predicted
particle X̃(l)

i (k) using Eq. (11).
L3. Gaussian Modeling Predictive Distribution: Compute mean

µ̄(l)(k) and covariance Σ̄(l)(k) of a Gaussian approximation
of the local predictive density using X̃(l)

i (k) and Eqs. (12)-(13).

L4. Weight Update: Compute the weights associated with X̃(l)
i (k)

using Eq. (14).
L5. Intermediate Local Estimates: Approximate the local state es-

timate ψ(l)(k) and its corresponding error covariance P (l)(k)

from {X̃(l)
i ,W

(l)
i (k)}N

(l)
p

i=1 and Eqs. (16)-(17).
Diffusive Fusion: Node l updates its local state estimate x̂(l)(k) us-

ing ψ(j)(k), (j ∈ ℵ(l)) and Eq. (19).
L6. Diffusive Particle Generation: Node l generates a set of np up-

dated particles X(l)
i (k) by sampling from the Gaussian approxi-

mation of the posterior distribution given by Eq. (22).

It is important to note that although the notation P (l)(k) has been
used in Eq. (22), it does not represent the covariance of the diffu-
sive state estimate x̂(l)(k). This is because the diffusion update is
only performed on the intermediate state estimates ψ(l)(k) and not
performed on the covariance matrices. Algorithm 1 lists the steps
involved in our diffusive particle filter implementation.
Comparison with Consensus Fusion: The diffusive fusion used in
the proposed D/DPF is similar in nature to the update step of con-
sensus based algorithms with an important difference that is elabo-
rated in terms of the conventional Laplacian-based consensus algo-
rithm [4], where each node updates its local state estimate as follows

x̂(l)(k) = ψ(l)(k) + ε
∑

j∈ℵ(l)

(
ψ(l)(k)−ψ(j)(k)

)
(23)

=
(
1− (n(l) − 1)ε

)
ψ(l)(k) +

∑
j∈ℵ(l)−{l}

ψ(j)(k),

where ε ∈ (0, 1/∆
(l)
max) with ∆

(l)
max the maximum degree of local

neighbourhoods within the AN/SN. In consensus-type algorithms,
the weights are ε and (1− (n(l)−1)ε), respectively. In the D/DPF, a
convex combination of the intermediate estimates of the neighbours
are used with more general weights. This is a key difference between
the D/DPF and existing distributed particle filters, which results in
the improved performance observed in our simulations presented in
Section 4. The diffusive weights α(j,l) can change with time result-
ing in an adaptive, time-varying approach.
Communication Complexity: At each iteration k, node l com-
municates: (i) its vector observation z(l) of length n(l)

z within its
neighbourhood during the local filtering step, and; (ii) the interme-
diate state estimates ψ of dimension nx during the diffusion update
step. The communication overhead for node l is (nx + n

(l)
z ). Please

note that the D/DPF involves only one iteration of diffusive fusion
between two successive observations within local neighbourhoods,
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Fig. 1. RMS errors in the target’s track estimated using the central-
ized particle filter, the proposed D/DPF, and two consensus-based
DPF implementations, namely the CI/DUPF [16] and Gu et al. [36].

while the consensus-based approaches require several consensus
iterations across the network for the consensus to converge. The mu-
tual transfer of observations within local neighbourhoods in D/DPF
is a fairly common observation strategy [6] used in distributed
particle filter implementations.

4. EXPERIMENTAL RESULTS

A distributed bearing-only target tracking application [35] is simu-
lated to test the proposed D/DPF, where the trajectory of a maneuver-
ing target (i.e., its position [X,Y ] and velocity [Ẋ, Ẏ ]) is estimated.
A sensor network of N = 20 nodes is considered with sensors dis-
tributed randomly in a square region. Each sensor communicates
with its neighbours within a connectivity radius of

√
2 log(N)/N

units. In this paper, we consider a non-linear clockwise coordinated
turn kinematic motion model [35] with Gaussian observation noise.
The process excitation is Gaussian, N (0, σv = 0.016). Measure-
ment at node l is the target’s bearing with respect to the node’s plat-
form (referenced clockwise positive to the y-axis), i.e.,

z(l)(k) = atan
(
X(k)−X(l)

Y (k)− Y (l)

)
+ ζ(l)(k), (24)

where (X(l), Y (l)) are the coordinates of node l. The bearing noise
variance σ(l)2(k) at node l is dependent on the distance between the
observer and the target r(l)(k), and is given by

σ(l)2(r(l)(k)) = 0.01r(l)
2

(k) + 0.0115r(l)(k). (25)

In order to show the robustness of the D/DPF to noise, we consid-
ered a tracking scenario with state-dependent observation noise and
large initialization uncertainty [35]. Due to state-dependent noise
variance, we note that the signal to noise ratio (SNR) is time-varying
with the mean SNR of 16dB and variance of 4.05 (averaged across
all nodes and time). Initialization of the filter is performed according
to [35]. For all nodes, the standard deviation of the initial observa-
tion error is set to 7.5◦. The target starts its track from coordinates
(10, 10) with the initial course set at −150◦. In our Monte Carlo
simulation, we test the following four particle filter implementations.
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Fig. 2. Target’s track estimated using the proposed D/DPF.

1. The centralized particle filter used as the benchmark.

2. The proposed diffusive D/DPF described in the paper.

3. The distributed consensus + innovation particle filter (CI/DUPF)
[16], which has been specially designed for networks with
communication constraints and limited consensus iterations.
In the CI/DUPF, the number of consensus iterations in be-
tween two successive iterations of the DPF is limited to 3.
Convergence of the consensus step is not guaranteed.

4. Distributed particle filter [36], referred to as Gu et al., where
the consensus algorithms are allowed to converge.

The total number np of the vector particles in all implementations is
set to 1000 with the particles evenly divided between the local filters
in the distributed implementations. Based on a Monte-Carlo simula-
tion of 100 runs, Fig. 1 plots the root mean square (RMS) position
error between the target’s true and estimated positions as it evolves
over time for the aforementioned distributed implementations of the
particle filter. See [16] for the definition of the RMS position er-
ror. The RMS error corresponding to the D/DPF is lower than its
counterparts showing that the diffusive fusion is more robust to ini-
tialization uncertainties and noise. In the context of linear systems
using the Kalman filter, the superiority of the diffusive fusion strate-
gies over consensus strategies has already been reported in [6]. We
confirm the result for the distributed particle filter implementations
developed for state estimation in non-linear systems. A realization
of the sensor placement is shown in Fig. 2, where we see that the
estimated trajectory of the D/DPF overlaps the actual trajectory of
the target. Additional simulations corroborated these findings.

5. SUMMARY

The paper proposes the diffusion-based distributed implementation
of the particle filter (D/DPF) based on our diffusive-fusion frame-
work for intermittently connected networks with non-linear dynam-
ics. Our main contribution is to extend the distributed non-linear es-
timation framework to incorporate diffusive fusion and to eliminate
the need of consensus of any form. The condition for achieving con-
sensus between successive iterations of the local particle filters is no
longer a requirement, resulting in an on-line D/DPF implementation.
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