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ABSTRACT

This paper proposes a new technique to concatenate 1-bit
compressed sensing with a convolutional channel encoder
for transmission of sparse signals over a memoryless AWGN
channel. At the reconstruction part, an iterative decoder, re-
ferred to as turbo-CS decoder, has been proposed. At the
turbo-CS decoder, the sparse signal is decoded through itera-
tions between an a posteriori probability decoder and a soft-
in/soft-out 1-bit compressed sensing decoder. By numerical
experiments, we show that the turbo-CS decoder outperforms
the state-of-the-art algorithms for 1-bit compressed sensing
reconstruction in the presence of AWGN channel by more
than 10 dB in terms of signal reconstruction performance.

Index Terms— 1-bit compressed sensing, iterative decod-
ing, message passing de-quantization

1. INTRODUCTION

Compressed sensing (CS) enables signal acquisition through a
few number of non-adaptive linear measurements by exploit-
ing the sparsity in the signals [1, 2]. In practice, many types
of signals are sparse (i.e., most of their elements are zero or
near to zero) or can be approximated by sparse signals [3–5].
In CS, the number of required linear measurements to ensure
exact signal reconstruction is less than the number of the ele-
ments in the original signal vector. Therefore, it can be stud-
ied as a compression method for sparse signals.

Typically, in communication applications, compressed
measurements need to be quantized for further transmission.
Furthermore, the transmission channel adds noise to the quan-
tized measurements which makes the signal reconstruction
process challenging. To alleviate the effect of the channel
noise, a channel encoding system can be applied.

In this work, we consider sparse signal transmission over
an AWGN channel. We propose an iterative decoding method
which we refer to as turbo-CS decoder. At the transmitter, we
apply 1-bit CS [6, 7] and a convolutional channel encoder as
the outer and the inner component encoders, respectively.

At the turbo-CS decoder, a posteriori probability (APP)
decoder and soft-in/soft-out (SISO) 1-bit CS decoder are ap-
plied. The iterative decoding approach of turbo-CS is the
same as in turbo-codes where two decoders at the receiver
exchange a posteriori /a priori information through a number
of iterations to improve the decoding process [8–10].

The main contribution of this paper is to design a SISO
1-bit CS decoder using the message passing technique. There
are two main challenges in the design of SISO 1-bit CS de-
coder. Firstly, the input of 1-bit CS decoders is in the form
of bit while in SISO 1-bit CS decoder the input should be in
the form of probabilities (soft-input). In addition, the recon-
structed signal at the output of 1-bit CS decoders is in the form
of real value elements with zero-mean Gaussian distribution.
Thus, generating updated bit probabilities (soft-output) based
on these values is not straightforward.

The SISO 1-bit decoder that we introduce in this paper
is based on message passing de-quantization (MPDQ) algo-
rithm in [11]. The MPDQ algorithm applies Gaussian ap-
proximation of loopy belief propagation to estimate the sparse
signals from 1-bit CS measurements. Here, we significantly
modify MPDQ to accept soft-input and to provide soft-output.
The proposed algorithm is referred to as SISO 1-bit MPDQ.

The proposed turbo-CS decoder in this paper is dramatic
improvement to the method first introduced by the authors
in [12]. Here we instead use a Bayesian CS decoder and de-
rive for the first time the non-obvious way to interface the CS
decoder to the APP decoder. The SISO 1-bit CS decoders
in [12, 13] are based on heuristically chosen linear/non-linear
mapping functions to provide a priori information, which is
not necessarily bit probability, to the APP decoder. In SISO 1-
bit MPDQ proposed in this paper, the soft-output is bit proba-
bility that enables the APP decoder to decode more effectively
in the next iteration of turbo-CS decoding.

Through numerical simulations we show that the turbo-
CS decoder outperforms the most efficient 1-bit CS decoders,
e.g. R1-BCS [14], in terms of signal reconstruction by more
than 10 dB in the presence of AWGN channel with a much
lower complexity.

2. SYSTEM MODEL

Assume a sparse signal vector x ∈ RN where there are only
K non-zero elements in the signal. In classic CS sampling
method, each measurement is obtained by an inner product of
x with φi ∈ RN where φi is the ith row of the measuring
matrix Φ. In other words, we have yi = 〈φi,x〉 for i =
1, . . . ,M . Therefore, the measurement vector y is obtained
from y = Φx .

It is shown that matrix Φ satisfies the restricted isometry
property which guarantees exact signal reconstruction with
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Finally, we summarize this paper with a conclusion in Section
VI.

II. SYSTEM MODEL

In this section, we explain encoding system and channel
model. The encoder, which we refer to as turbo-CS encoder,
consists of a 1-bit CS encoder (as a source encoder) and a
channel encoder to form a serial concatenated source-channel
encoder. The input of turbo-CS encoder is a sparse signal.

A. 1-bit compressed sensing
Assume a sparse signal vector x ∈ RN where there are only

K non-zero elements in the signal. In classic CS sampling
method, each measurement is obtained by an inner product of
x with φi ∈ RN where φi is the ith row of the measuring
matrix Φ. In other words, we have yi = ⟨φi,x⟩ for i =
1, . . . , M . Therefore, the measurement vector y is obtained
from

y = Φx. (1)

It is shown that matrix Φ satisfies the restricted isometry
property (RIP) which guarantees signal reconstruction with
high probability when the elements of Φ independently and
identically follow a Gaussian distribution [16].
In quantized CS, for further storage and transmission

purposes, the measurements are quantized to a number of
alphabets. 1-bit CS refers to a spacial case where each obtained
measurements are quantized by a 1-bit (two-levels) quantizer
[17]. In fact, 1-bit quantizer is a simple scalar sign function
over the CS measurements. We denote the 1-bit scalar quanti-
zation function with Q : R → {−1, +1}. We denote the 1-bit
CS measurements by b ∈ {−1, +1}M and we have

Q (y) = sign (Φx) = b. (2)

In most practical applications, the sparsity level of x is
stochastic and unknown to the reconstruction part. In this
work, we assume that the elements of x are independent and
identically distributed (i.i.d) and generated from the following
Bernoulli-Gaussian distribution:

p (x) = ρ

√
ρ

2π
e− ρx2

2 + (1 − ρ) δ (x) (3)

where ρ is the sparsity ratio defining the density of non-zero
elements in the signal.
Since CS reduces the dimension of the signal, it can be

generally considered as a compression method with rateN/M .
In particular, since the 1-bit CS outputs are in the form of bits,
1-bit CS is a proper choice of CS encoder for further channel
encoding.

B. Concatenated source-channel encoder
As illustrated in Fig. 1, in turbo-CS encoding scheme,

obtained 1-bit CS measurements, b, are encoded through a
channel encoder. We focus on a convolutional encoder with
rate M/P as a channel encoder. We denote the BPSK mod-
ulated encoded block at the output of convolutional encoder
by d ∈ {−1, +1}P . The encoded bits then pass through a
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Fig. 1. Turbo-CS encoding system and channel model

memoryless AWGN channel with noise variance N0 = σ2
c .

Thus, we have

zi = di + ni for i = 1, . . . , P (4)

where ni ∼ N
(
0, σ2

c

)
. We denote the channel output vector

(received data) with z.
In the next section, we propose an iterative decoder to

reconstruct the signal for the above mentioned transmission
model.

III. TURBO-CS DECODER

In this section, we propose an iterative joint source-channel
decoder for mentioned transmission system in Section II
which we refer to as turbo-CS decoder. The turbo-CS decoder
comprises of an APP decoder as the inner component decoder
and a 1-bit CS decoder as the outer component decoder.

A. A posteriori probability decoder

An APP decoder is a soft-in/soft-out (SISO) decoder [18].
The inputs of an APP decoder are:

• The received noisy signal z.
• The a priori probabilities of the bits which are denoted
by p[apri](bi) for i = 1, . . . , P .

The a priori bit probabilities in turbo-decoding are usually
provided by the outer constituent decoder (in our case the 1-
bit CS decoder).
APP decoder applies BCJR algorithm which generates APP

of the states and transitions of a discrete time finite-state
Markov process [19]. The output of APP decoder is in the
form of a posteriori bit probabilities which are denoted by
p[apos](bi) for i = 1, . . . , P .
At the turbo-CS decoder, the a posteriori bit probabilities

from APP decoder are given to a SISO inner component to up-
date the bit probabilities and provide a priori bit probabilities
to be given to APP decoder for the next turbo-CS decoding
iteration. Therefore, the outer constituent decoder in turbo-CS
should be in the form of SISO 1-bit CS decoder.
In the next section, we propose a SISO 1-bit CS decoder

by applying a message passing de-quantization method first
proposed in [13], which we refer to as SISO 1-bit MPDQ.
SISO 1-bit MPDQ is used in turbo-CS as a SISO outer
component decoder that accepts bit probabilities (soft-input)
and provides updated bit probabilities at the output (soft-
output).

Fig. 1: Turbo-CS encoding system and the channel model
high probability when the elements of Φ independently and
identically follow a Gaussian distribution [15].

In quantized CS, for further storage and transmission pur-
poses, the measurements are quantized to a number of al-
phabets. 1-bit CS refers to a special case where each ob-
tained measurement is quantized by a 1-bit (two-level) quan-
tizer [16]. In fact, 1-bit quantizer is a simple scalar sign func-
tion over the CS measurements. We denote the 1-bit scalar
quantization function by Q : R → {−1,+1}. We denote the
1-bit CS measurements by b ∈ {−1,+1}M and we have

Q (y) = sign (Φx) = b. (1)

In most practical applications, the sparsity level of x is
stochastic and unknown to the reconstruction part. In this
work, we assume that the elements of x are independent and
identically distributed (i.i.d) and generated from the following
Bernoulli-Gaussian distribution:

p (x) = ρ

√
ρ

2π
e−

ρx2

2 + (1− ρ) δ (x) , (2)

where ρ is the sparsity ratio defining the density of non-zero
elements in the signal.

Since CS reduces the dimension of the signal, it can
be generally considered as a compression method with rate
N/M . In particular, since the 1-bit CS outputs are in the
form of bits, 1-bit CS is a proper choice of CS encoder for
further channel encoding. As illustrated in Fig. 1, in turbo-
CS encoding scheme, the obtained 1-bit CS measurements,
b, are encoded through a channel encoder. We focus on a
convolutional encoder with rate M/P as a channel encoder.
We denote the BPSK modulated encoded block at the output
of convolutional encoder by d ∈ {−1,+1}P . The encoded
bits then pass through a memoryless AWGN channel with
noise variance N0 = σ2

c . Thus, we have
zi = di + ni for i = 1, . . . , P (3)

where ni ∼ N
(
0, σ2

c

)
. We denote the channel output vector

(received data) by z.

3. TURBO-CS DECODER

In this section, we propose an iterative decoder for the men-
tioned transmission system in Section 2 which we refer to
as turbo-CS decoder. The turbo-CS decoder comprises of an
APP decoder as the inner component decoder and a 1-bit CS
decoder as the outer component decoder.

3.1. A posteriori probability decoder

An APP decoder is a SISO decoder [17]. The inputs of an
APP decoder are the received noisy signal (z) and the a priori

probabilities of the bits which are denoted by p[apri](bi) for
i = 1, . . . ,M . The a priori bit probabilities in turbo-decoding
are usually provided by the outer constituent decoder (in our
case the 1-bit CS decoder).

APP decoder applies BCJR algorithm which generates
APP of the states and transitions of a discrete time finite-state
Markov process [18]. The output of APP decoder is in the
form of a posteriori bit probabilities which are denoted by
p[apos](bi) for i = 1, . . . ,M .

At the turbo-CS decoder, the a posteriori bit probabilities
from APP decoder are given to a SISO inner component to up-
date the bit probabilities and provide a priori bit probabilities
to be given to APP decoder for the next turbo-CS decoding it-
eration. Therefore, the outer constituent decoder in turbo-CS
should be in the form of SISO 1-bit CS decoder.

3.2. Soft-in/soft-out 1-bit CS decoder formulation

In this section, we derive the Bayesian formulation of SISO 1-
bit CS decoding problem. For simplicity and as the first step,
we assume that there is no transmission error in the channel.
Therefore, we can omit the convolutional encoder in Fig. 1
and we have z = b where b is obtained from (1). Hence, the
conditional probability density function of the signal x given
the received b is

p (x|b) ∝ p (b|y) p (x)

∝
M∏

i=1

p (bi|yi)
N∏

i=1

p (xi) , (4)

where ∝ denotes equality after normalization to unity. The
element-wise conditional probability in (4) is obtained from

p (bi|yi) =
{
1, if yi ∈ Q−1 (bi)
0, yi /∈ Q−1 (bi) ,

(5)

Q−1 (b) =

{
[0,+∞) , if b = +1

(−∞, 0) , b = −1. (6)

The distribution in (4) describes the complete statisti-
cal characterization of the decoding problem. The minimum
mean square error (MMSE) estimator of x is obtained from

x̂MMSE (b) = E (x|b) . (7)

However, as discussed in Section 2, turbo-CS encoded
bits are contaminated with channel noise and after channel
decoding the APP decoder provides probability of bits, de-
scribing the uncertainty in the decoded bits. The probability
of getting bit block b at the output of APP decoder is

p[apos] (b) =

M∏

i=1

p[apos] (bi) , (8)

where p[apos](bi) for each element of b is obtained from the
output of the APP decoder. Therefore, the decoding problem
in the SISO 1-bit CS decoder is the estimation of x given the
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bit probabilities in (8). By obtaining the MMSE estimate for
each b from (7) and calculating the probability of b from (8),
we can apply the law of total expectation to estimate signal x.
Hence,
E (x̂MMSE(b)) =

∑

all b

E (x|b) p[apos] (b) = E (x) = x̂, (9)

where x̂ denotes the estimate of original signal x via the SISO
1-bit decoder.

Recently, Kamilov et al. introduced message passing de-
quantization (MPDQ) algorithm to solve (7) [11].

In the following section, we propose SISO 1-bit MPDQ
to estimate the original signal x to x̂ in (9).

3.3. Soft-in/soft-out 1-bit message passing de-quantization

In this section, we introduce SISO 1-bit MPDQ as a SISO 1-
bit CS decoder component in turbo-CS decoder. SISO 1-bit
MPDQ is a modified version of MPDQ. The main two modi-
fication steps are as follows: 1) We modify the non-linear fac-
tor update function in MPDQ to accept the bit probabilities,
p[apos](b), as input. 2) We extend MPDQ to provide updated
bit probabilities at the output (as a priori bit probabilities for
the APP decoder in the next iteration). In the following, we
explain SISO 1-bit MPDQ:
Step1) Initialization: We set the initial values x̂(0) =
E (x) = 0, vx(0) = var (x) = 1, ŝ(0) = 0 where ex-
pected and variance vectors are set with respect to prior
distribution of x in (2). The number inside the parenthesis
denotes the number of corresponding iteration and 0 and 1
denote all-zero and all-one vectors, respectively.
Step 2) Linear factor update functions:

vu (t) = (Φ •Φ)vx (t− 1) , (10)
û (t) = Φx̂ (t− 1)− vu (t) • ŝ (t− 1) . (11)

Step 3) Modified non-linear factor update functions:

ŝi (t) = EF

(
p[apos] (bi) , ûi (t) , v

u
i (t)

)
, (12)

vsi (t) = VF

(
p[apos] (bi) , ûi (t) , v

u
i (t)

)
, (13)

where • denotes element-wise multiplication. ûi and vui de-
note the ith elements of û and vu, respectively. EF and VF are
functions over scalar values:

EF (p(b), û, v
u) =

1

vu
(E (z)− û) , (14)

VF (p(b), û, v
u) =

1

vu

(
1− var (z)

vu

)
. (15)

The above scalar functions, which are the modified versions
of factor update functions in [11], consider all the quantiza-
tion symbols with different probabilities as input. Therefore,
this step allows the input of MPDQ to be in the form of bit
probabilities (soft-input).

From the law of total expectation and the law of total vari-
ance we have

E (z) =
∑

b=−1,+1

p (b)E
(
z|z ∈ Q−1(b)

)
, (16)

VF (p(b), û, vu) =
1

vu

(
1 − var (z)

vu

)
. (19)

The above scalar functions, which are the modified ver-
sions of factor update functions in [13], consider all the
quantization symbols with different probabilities as input.
Therefore, this step allows the input of MPDQ to be in
the form of bit probabilities (soft-input).
From the law of total expectation and total variance we
have

E (z) =
∑

b=−1,+1

p (b) E
(
z|z ∈ Q−1(b)

)
(20)

and

var (z) = Eb (var (z|b)) + varb (E (z|b)) = (21)

= Eb (var (z|b)) + Eb

(
E (z|b)2

)
− E (z)2

where

Eb (var (z|b)) =
∑

b=−1,+1

p (b) var
(
z|z ∈ Q−1(b)

)
(22)

Eb

(
E (z|b)2

)
=

∑

b=−1,+1

p (b)E
(
z|z ∈ Q−1(b)

)2
.

(23)
The conditional expectation and variance in (20), (22)
and (23) are with respect to a priori distribution z ∼
N (û, vu).

4) Linear variable update functions:

vr (t) =
(
(Φ • Φ)T vs (t)

)−1

(24)

r̂ (t) = x̂ (t − 1) + vr (t) •
(
ΦT ŝ (t)

)
(25)

where ŝ and vs are vector representation of (16) and (17)
respectively.

5) Non-linear variable update functions:

x̂i (t) = EV (r̂i (t) , vr
i (t)) (26)

vx
i (t) = VV (r̂i (t) , vr

i (t)) (27)

where r̂i and vr
i denote the ith elements of r̂ and vr

respectively, and the above functions are defined over
scalar values. We have

EV (r̂, vr) = E (x|r̂) (28)

and
VV (r̂, vr) = var (x|r̂) . (29)

The above expected value and variance are with respect
to r̂ = x + w where w ∼ N (0, vr).

6) Termination of iterations: The iteration number incre-
ments by one and the algorithm proceeds to step 2)
until convergence. Through the above updating steps the
original signal x is estimated with x̂.
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Fig. 2. Turbo-CS decoding: APP decoder and SISO 1-bit MPDQ decoder
are iteratively estimate signal x̂ by exchanging bit probabilities.

7) Soft-output: In order to update a posteriori bit prob-
abilities, p[apos](b), we need to find the distribution of
the estimate of y. We apply mean and variance of x in
(26) and (27). Since y is a linear combination of x, the
estimate of original y is obtained from

ŷ = E (y) = Φx̂. (30)

and
vy = var (y) = (Φ • Φ)vx. (31)

From Central limit theorem, the estimated yi at the output
of SISO 1-bit MPDQ has a Gaussian distribution with
mean ŷi and variance vy

i for i = 1, · · · , M . Hence, we
can update the probability of each corresponding bit at
the output of SISO 1-bit CS decoder from

p[apri] (bi) = Q

(
−biŷi√

vy
i

)
(32)

where Q (x) = 1√
2π

∫ ∞
x exp

(
−u2

2

)
du.

Note that the modifications to MPDQ are in steps 3 and 7,
and the rest of the algorithm is derived from MPDQ in [13].

D. Combination of APP decoding and soft-in/soft-out 1-bit
message passing de-quantization
Turbo-CS decoder consists of APP decoder as inner com-

ponent decoder and SISO 1-bit MPDQ decoder as outer
component decoder. In Fig. 2, the block diagram of turbo-CS
decoder has been illustrated. In each turbo-CS iteration, APP
decoder provides a posteriori bit probabilities, p[apos](b), by
processing a priori bit probabilities, p[apri](b) and the received
signal z. Then, the a posteriori bit probabilities are given to
SISO 1-bit MPDQ as soft-input. SISO 1-bit MPDQ estimates
the original signal and updates the bit probabilities as soft-
output. The output bit probabilities are given to APP decoder
as updated a priori information for the next turbo-CS iteration.

Fig. 2: The turbo-CS decoder: the proposed modules (Step 3
and Step 7) are shown by the dark color.

var (z) = Eb (var (z|b)) + varb (E (z|b)) = (17)

= Eb (var (z|b)) + Eb
(
E (z|b)2

)
− E (z)

2
,

Eb (var (z|b)) =
∑

b=−1,+1

p (b) var
(
z|z ∈ Q−1(b)

)
, (18)

Eb
(
E (z|b)2

)
=

∑

b=−1,+1

p (b)E
(
z|z ∈ Q−1(b)

)2
. (19)

The conditional expectation and variance in (16), (18) and
(19) are with respect to a priori distribution z ∼ N (û, vu).
Step 4) Linear variable update functions:

vr (t) =
(
(Φ •Φ)

T
vs (t)

)−1
, (20)

r̂ (t) = x̂ (t− 1) + vr (t) •
(
ΦT ŝ (t)

)
, (21)

where ŝ and vs are vector representation of (12) and (13).
Step 5) Non-linear variable update functions:

x̂i (t) = EV (r̂i (t) , v
r
i (t)) , (22)

vxi (t) = VV (r̂i (t) , v
r
i (t)) , (23)

where r̂i and vri denote the ith elements of r̂ and vr, respec-
tively, and the above functions are defined over scalar values.
We have EV (r̂, vr) = E (x|r̂) and VV (r̂, vr) = var (x|r̂).
The above expected value and variance are with respect to
r̂ = x+ w where w ∼ N (0, vr).
Step 6) Termination of iterations: The iteration number in-
crements by one and the algorithm proceeds to Step 2 until
convergence. Through the above updating steps the original
signal x is estimated with x̂.
Step 7) Soft-output generator: In order to update a posteriori
bit probabilities, p[apos](b), we need to find the distribution of
the estimate of y. We apply mean and variance of x in (22)
and (23). Since y is a linear combination of x, the estimate
of original y is obtained from ŷ = E (y) = Φx̂ and vy =
var (y) = (Φ •Φ)vx.

From Central limit theorem, the estimated yi at the output
of SISO 1-bit MPDQ has a Gaussian distribution with mean
ŷi and variance vyi for i = 1, · · · ,M . Hence, we can update
the probability of each corresponding bit at the output of SISO
1-bit CS decoder from

p[apri] (bi) = Q

(
−biŷi√
vyi

)
, (24)
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Fig. 3: Comparison of the turbo-CS decoder reconstruction
performance with the other 1-bit CS reconstruction algo-
rithms in terms of Hamming errors (a), and RSNR (b).

where Q (x) = 1√
2π

´∞
x

exp
(
−u2

2

)
du.

Remark: the modifications in SISO 1-bit MPDQ are in Step 3
and Step 7; The rest of the algorithm is derived from MPDQ.
The reader is referred to [11] and [19] for more details.

As shown in Fig. 2, in each turbo-CS decoder iteration
(itr.), APP decoder provides a posteriori bit probabilities,
p[apos](b), by processing a priori bit probabilities, p[apri](b)
and the received signal z. Then, the a posteriori bit proba-
bilities are given to SISO 1-bit MPDQ as soft-input. SISO
1-bit MPDQ estimates the original signal and updates the
bit probabilities as soft-output. The output bit probabilities
are given to APP decoder as updated a priori information for
the next turbo-CS iteration. In the first iteration of turbo-CS
decoder, the a priori bit probabilities are initialized with 0.5,
i.e., each bit has an equal chance of being a 1 or 0.

4. PERFORMANCE OF THE TURBO-CS DECODER

In this section, we compare the performance of the turbo-CS
decoder with the most recent 1-bit CS algorithms designed for
signal reconstruction in the presence of noise (AOP-f [20],
NARFPI [21], NARSS [22] and R1-BCS [14]) through nu-
merical experiments. Here, we assume that signal x is gen-
erated based on the distribution in (2). We set N = 1000
and ρ = 0.01. The measuring matrix Φ has i.i.d zero-mean
Gaussian entries with variance 1/M where M = 500.

As a channel encoder, we use a recursive systematic rate
1/3 convolutional encoder with polynomial coefficients G =(
1, 3723 ,

33
23

)
8
. The coded bits then pass through a memoryless

AWGN channel. We define signal to noise ratio (SNR) as the
channel noise measure by SNR = Eb

N0
= 1

σ2
c

, where Eb is the
average power of a bit at the output of 1-bit CS encoder.

At the receiver, AOP-f, NARFPI and NARSS require
knowledge of the channel noise in terms of bit flips, L. We
provide average of L to these decoders from a table that maps
each SNR to L and is calculated through simulation. In addi-

Table 1: Comparison of complexity of different 1-bit CS al-
gorithms in terms of running time (in seconds) on a PC with
intel Core i7, 3.40 GHz processor and 8G RAM.

Algorithm Turbo CS AOPf NARFPI NARSS R1-BCS
Running time (s) 0.18 per itr. 0.14 1.21 0.06 63

tion, we input ρN as sparsity level of the signal to the AOP-f
decoder. For AOP-f, NARFPI, NARSS and R1-BCS, the bits
at the receiver are provided by applying a simple comparator
function over the output bit probabilities of the APP decoder
(i.e., bits with probabilities greater than 0.5 are mapped to
+1 and the rest of the bits are mapped to −1). Other setup
parameters of these algorithms are the same as in their ref-
erences. The turbo-CS decoder is applied to reconstruct the
signal through 6 turbo-CS iterations. The number of inner
iterations in SISO 1-bit MPDQ is set to tmax = 100.

We measure the performance of the signal reconstruction
by received signal to noise ratio (RSNR) and Hamming er-

ror. Former is defined by RSNR =
E(‖x‖22)

E(‖x̂−x‖22)
where ‖x‖2

denotes the `2-norm of vector x. In order to have a fair com-
parison, we normalize the sparse signals before 1-bit CS en-
coding to have unit energy (i.e., ‖x‖2 = 1). The same nor-
malization is done after signal reconstruction at the output
of the decoders1. In addition, we define Hamming errors by
‖sign(Φx)− sign(Φx̂)‖0 /M , where ‖·‖0 denotes `0-norm
(i.e., number of non-zero elements in the argument).

The averaged reconstruction performance of the 1-bit CS
decoders over 1000 Monte Carlo realizations is illustrated in
Fig. 3. As it is shown, the turbo-CS decoder outperforms
the other algorithms after two iterations (itr. 2) both in terms
of Hamming errors (Fig. 3-a) and RSNR (Fig. 3-b). The
turbo-CS decoder outperforms R1-BCS by more than 10 dB
in RSNR after 6 iterations (itr. 6) at SNR= 0 (Fig. 3-b).

In Table 1 the complexity of the decoders is shown in
terms of running time in seconds. It can be seen that the
turbo-CS decoder is significantly less complex than R1-BCS,
that has the closest reconstruction performance to turbo-CS.

5. CONCLUSION

We considered transmission of sparse signals over an AWGN
channel by serially concatenating the 1-bit-CS encoder and
the convolutional channel encoder. A turbo-CS decoder is
proposed, where a SISO 1-bit MPDQ and an APP decoder
are applied. We introduced the SISO 1-bit MPDQ decoder
which accepts soft-values at the input and provides updated
soft-values at the output. Through numerical simulations, we
showed that the turbo-CS decoder outperforms the most effi-
cient recent 1-bit CS algorithms in terms of RSNR (by more
than 10 dB) and with a lower complexity when the measure-
ments are contaminated with AWGN.

1NARFPI, NARSS and AOP-f require the sparse signal to be on unit `2-
ball to reconstruct the signal efficiently.
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