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ABSTRACT
In this paper, we utilize the framework of compressed
sensing (CS) for device detection and distributed resource
allocation in large-scale machine-to-machine (M2M) com-
munication networks. The devices are partitioned into
clusters according to some pre-defined criteria, e.g., prox-
imity or service type. Moreover, by the sparse nature
of the event occurrence in M2M communications, the
activation pattern of the M2M devices can be formulated
as a particular block sparse signal with additional in-block
structure in CS based applications. This paper introduces
a novel scheme for distributed resource allocation to
the M2M devices based on block-CS related techniques,
which mainly consists of three phases: (1) In a full-
duplex acquisition phase, the network activation pattern
is collected in a distributed manner. (2) The base station
detects the active clusters and the number of active devices
in each cluster, and then assigns a certain amount of
resources accordingly. (3) Each active device detects the
order of its index among all the active devices in the
cluster and accesses the corresponding resource for trans-
mission. The proposed scheme can efficiently reduce the
acquisition time with much less computation complexity
compared with standard CS algorithms. Finally, extensive
simulations confirm the robustness of the proposed scheme
under noisy conditions.

Index Terms— Compressed sensing, block sparse, dis-
tributed resource allocation, M2M communications.

I. INTRODUCTION

Towards the next generation of mobile and wireless
networks, machine-type communications (MTC) [1] is
expected to play a significant role and form the basis for
the future Internet of Things (IoT). However, the number
of M2M devices in a network can potentially be very
large, thus posing serious challenges to the radio access
network. In LTE, a device accesses the network by firstly
sending a preamble to indicate its active status, followed
by a resource allocated by the serving base station (BS)
based on the detection [2]. Nevertheless, for large-scale
communications like MTC, distributed resource allocation
schemes are proposed due to their better scalability with
the size of the network [3].
Apart from a huge number of devices, the messages

in M2M communication scenarios are in general highly
correlated due to proximity, the same service type, and
etc [4]. As a result, it is reasonable to partition the devices
into a number of clusters. Moreover, since the MTC traffic
is characterized by the sporadic communication among a
huge number of devices, each M2M device has a low prob-
ability of being active, thus exhibiting a certain level of

sparsity in the detection activity. Recognizing the cluster-
like behavior and the sparsity in the activation pattern
among the M2M devices, the detection problem can be
formulated as a particular block sparse signal recovery
problem [5]-[7] – with additional in-block structure – in
the compressed sensing (CS) based applications, where the
signal acquisitions can be done in a significantly reduced
sampling rate [8]-[10].

Motivated by the CS principles [11], we propose in
this paper a novel distributed detection scheme of the
network activation pattern to facilitate distributed resource
allocation strategies for large-scale M2M communications.
Our scheme mainly consists of three phases:

(i) In the acquisition phase, all devices transmit simul-
taneously pre-equivalized individual sequences, each of
which indicating the membership to a particular cluster.
Exploiting full-duplex transceivers, all the devices and
the BS receive individual linear combinations. A similar
scheme has already been investigated in [12] for CSI
feedback reduction.

(ii) The BS then detects the active clusters and the
number of active devices in each cluster. Then it broadcasts
this information to the devices and assigns a certain
amount of resources accordingly.

(iii) Each active device detects the order of its index
among all the active devices in the cluster and accesses
the corresponding resource for transmission.

A novel algorithm based on the Count-Sketch procedure
[13] is developed for the realization of phase (ii). Phase
(iii) is performed based on some conventional greedy
algorithms such as Orthogonal Matching Pursuit (OMP)
[15] or Iterative Hard Thresholding (IHT) [16] but with
side information of the feedback from the BS to reduce
the number of iterations. Theoretical evaluations show
that the proposed scheme is able to efficiently reduce the
acquisition time with much less computation complexity.
For a K-sparse signal of length N and block-size d,
O(K log d) distributed measurements are sufficient for
robust support recovery for the proposed algorithms, which
is much less when compared with O(K logN) required
by conventional CS recovery algorithms like Basis Pursuit
(BP) [17] or OMP. Finally, extensive simulations confirm
the robustness of the proposed scheme in the presence of
Gaussian noise and inaccurate channel estimations.

The remainder of this paper is organized as follows.
Section II describes the system model and formulates the
problem. In Section III, the proposed distributed resource
allocation scheme is discussed in detail. Numerical results
are presented and evaluated in Section IV. Finally, Section
V concludes the paper with some final remarks.
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II. SYSTEM MODEL

II-A. Transmitter Side

Consider an M2M network with N devices, which are
partitioned in advance into L clusters of equal size d
according to some pre-defined criteria. A cluster is said
to be “active” if one or more devices from the same
cluster are active. We define a twofold sparsity pattern
to model the active status of the M2M devices, namely
the block-sparsity KB and in-block-sparsity KI . That is,
only KB out of L clusters are active, and the number of
active devices in each cluster is at most KI . Therefore,
the total number of active devices in the network is
K ≤ KBKI . Due to the sparse nature of the event
occurrence in MTC, we have K ≤ KBKI ≪ N = Ld.
Herein, we denote a K-sparse binary sequence x ∈ B

N as
the status vector of our interest, with entry “1” indicating a
device is active and “0” otherwise. Furthermore, we denote
xℓ ∈ B

d, ℓ ∈ {1, · · · , L} as the status vector for cluster ℓ.
In addition, the block support, denoted as SB , is defined
to be the set of index of the active clusters: SB = {ℓ ∈
{1, · · · , L} : ||xℓ||0 6= 0}. Similarly, the in-block support,
denoted as SI,ℓ, indicates the set of indices of the active
devices in cluster ℓ: SI,ℓ = {j ∈ {1, · · · , d} : xℓ,j = 1}.
Since x is KB block sparse and KI in-block sparse, we
have |SB | = KB and |SI,ℓ| ≤ KI for all ℓ ∈ {1, · · · , L}.
We apply the CS theory to the transmission incurred

by the M2M devices in the network. To this end, let
A ∈ R

M×N be the measurement matrix whose exact
structure is defined later in Section III. Each column of A,
say column i denoted by ai, i ∈ {1, · · · , N}, corresponds
to the signature sent by M2M device i if it is active.
Besides, we denote Aℓ ∈ R

M×d as a submatrix of A
corresponding to the signatures sent by the devices from
the ℓ-th cluster.

II-B. Receiver Side

The signal y ∈ C
M received by the BS at some given

time instant is given by

y = AHBx+ ǫ, (1)

where HB ∈ C
N×N is the diagonal channel matrix, and

ǫ ∈ C
M is the thermal noise vector having random, zero-

mean components of variance σ2.
We assume that the cluster structures are known both

at the BS side and at all the M2M devices. Furthermore,
all the nodes in the network have the channel information
from other nodes to itself as well as from itself to the BS.
In addition, the network is assumed to support full-duplex
mode. Thus, besides the global measurement obtained
at the BS, the active devices also have their own local
measurements during acquisition phase (i).
We apply the CS theory in our proposed distributed

resource allocation scheme to reconstruct the K-sparse
signal x from the received signal y at the BS by using
M measurements. As discussed in Section I, on one hand,
the BS has to detect the number of active clusters as well
as the number of active devices in each cluster; and on the
other hand, each active device needs to detect the order of
its index among all the active devices in the cluster with
its local measurement and the feedback information from
the BS. Herein, mapping to the mathematical model, our
object of interest would be to perform the block support
recovery at the BS and the in-block support recovery at

each active device. To be specific, the goal is to obtain an
accurate estimate of SB and |SI,ℓ| for all ℓ ∈ {1, · · · , L}
at the BS, and thereafter, an accurate estimate of SI,ℓ at
each active device from cluster ℓ.

III. DISTRIBUTED RESOURCE ALLOCATION
FOR M2M

In this section, we propose a novel block CS based
recovery algorithm to solve the target problems for dis-
tributed resource allocation in large-scale M2M commu-
nication networks. As discussed in Section II-B, it consists
of two major phases, the block support recovery at the BS
and the in-block support recovery at the active devices,
respectively. Due to complexity reasons, convex methods
[17] are mainly prohibited in such applications. Therefore
we will apply some sketching and greedy algorithms for
our proposed approach.

III-A. Block Support Recovery at BS

The measurement matrix A ∈ R
M×N in (1) that we

use here is a structured random matrix, which is an
extension of those utilized by the Count-Sketch procedure
proposed in [13][14]. We denote by A(R, T, L, d, α) a
particular distribution over matrices having RT rows and
Ld columns (to be described below), and we assume that
the measurement matrix A is drawn from this distribution,
i.e., A ∼ A(R, T, L, d, α).
The measurement matrix A is composed of the vertical

concatenation of T individual random matrices, denoted
At ∈ R

R×N for t ∈ {1, · · · , T}. Meanwhile, each At

consists the horizontal concatenation of L sub-matrices
At,ℓ ∈ R

R×d for ℓ ∈ {1, · · · , L}. Each At,ℓ is a sparse
matrix containing exactly d non-zero components - located
on the same row and with the same value. The index
of the row with non-zero elements is chosen uniformly
at random from the set {1, 2, · · · , R}, and the non-zero
component takes the value of ±α with probability 1/2. For
a given realization of At,ℓ, let ht,ℓ ∈ {1, · · · , R} denote
the index of the row of At,ℓ that has the non-zero entries,
and st,ℓ ∈ {−α,+α} be the corresponding value of the
non-zero components in At,ℓ.
For illustration, suppose that the measurements are ob-

tained at the BS with noise-free transmission y = AHBx.
Since perfect channel knowledge HB is assumed to be
known both at the BS and at the devices, we can take, for
instance, the pseudo inverse of the channel matrix H+

B at
the transmitter side. Assuming full rank channel matrix,
the obtained measurements at the BS are given as

y = AHBH
+

Bx = Ax. (2)

We denote yt as the subvector of y corresponding to
observations obtained via the submatrix At, i.e., yt = Atx,
for t ∈ {1, · · · , T}. The extended Count-Sketch procedure
is implemented as follows. For t ∈ {1, · · · , T}, form
the signal estimates x̃t ∈ R

N by indexing and scaling
the entries of the corresponding observations yt, where
x̃t = AT

t yt. Then the individual entries of x̃t are given as
x̃t,i = st,ℓyt,ht,ℓ

for i ∈ {1, · · · , N}, if xi belongs to the
ℓ-th block. Thereafter, we form a signal estimate x̂ whose
entries are given by

x̂i = median{x̃t,i}
T
t=1, for i ∈ {1, 2, · · · , N}. (3)

In other words, each entry of the signal estimate is
obtained as the median of the corresponding entries of the
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estimates x̃t. Similarly, the block-wise estimate x̄ℓ can be
obtained as

x̄ℓ = median {x̂i}
dℓ

i=dℓ−d+1
, for ℓ ∈ {1, 2, · · · , L}.

(4)
The rationale for using the extended Count-Sketch algo-

rithm for block support recovery is illustrated as follows.
For a given xi from block ℓ ∈ SB , the estimate x̃t,i

corresponds exactly to the signals from block ℓ whenever
ht,ℓ is distinct from ht,ℓ̄, for all ℓ̄ ∈ SB\ℓ. Conditioned
on this, we have

x̃t,i = st,ℓyt,ht,ℓ
= st,ℓ

(

d
∑

i=1

st,ℓxi

)

= s2t,ℓ

(

d
∑

i=1

xi

)

= α2|SI,ℓ|,
(5)

where the second step follows from the structure of At,ℓ

with equal non-zero elements on the same row, and the
last step follows since xi ∈ {0, 1} is drawn from a binary
ensemble. Thence, each estimation x̃t,i of xi from the ℓ-th
blcok corresponds to |SI,ℓ| - the ultimate goal for block
support recovery at the BS. By taking the median value
block-wisely among all individual estimations as (4), the
size of the in-block support set |SI,ℓ| can be obtained as

|SI,ℓ| =

[

1

α2
· x̄ℓ

]

, for ℓ ∈ {1, 2, · · · , L}. (6)

Therefore, since |SI,ℓ| indicates the number of active
devices in cluster ℓ ∈ {1, 2, · · · , L}, those clusters with
|SI,ℓ| > 0 are marked as “active” and detected by the BS.
Now we analyze the probability of the conditions for

(5) to hold. For a particular t ∈ {1, · · · , T} and a given
xi from block ℓ ∈ SB , notice that the estimate x̃t,i

will corresponds exactly to |SI,ℓ| iff ht,ℓ is distinct from
ht,ℓ̄ for all ℓ̄ ∈ SB\ℓ. Conditioned on this, we form
a particular submatrix of At realized by the horizontal
concatenation of submatrices At,ℓ̄ for all ℓ̄ ∈ SB\ℓ. For
any of such realizations to ensure the conditions for (5),
since |SB | = KB , there are at most R − (KB − 1) out
of R allowable choices for the row index of At,ℓ where
the entries are non-zero. Furthermore, these choices are
equally likely since the index of rows with non-zero entries
are drawn uniformly at random. Therefore, we have

P
(

x̃t,i = α2|SI,ℓ|
)

≥
R−KB − 1

R
. (7)

As shown in [13], by applying the union bound to ensure
the conditions for (5) for all ℓ ∈ {1, · · · , L}, it leads
to a requirement of R = O(KB) and T = O(logL)
to guarantee the block support recovery at the BS with
overwhelming probability.

III-B. In-block Support Recovery at Devices

After the BS detects the active clusters in the network
and the number of active M2M devices in each active
cluster (without knowing exactly which one), it broadcasts
this information to the devices and assigns a certain
amount of resources accordingly; thus those active devices
can use this feedback as side information for the in-block
support recovery.
During the acquisition phase, each active device also si-

multaneously collects its own local measurements. Herein,
by taking the matrix for the transmit signatures defined in

(2), the local measurements obtained at an active device
are given by

yD = AHIH
+

Bx+ ǫ = Ãx+ ǫ, (8)

where HI is an N × N matrix representing the wireless
channels between the M2M devices.
As introduced in Section III-A, for a given cluster

ℓ ∈ {1, · · · , L}, the corresponding submatrix Aℓ has
only T rows with non-zero components, whose index
are denoted by the set Dℓ. Thus, in order to perform
the in-block support recovery of xℓ, we simply need to
focus on yD,ℓ – a vector composed of the entries of yD
corresponding to Dℓ, which is given as

yD,ℓ = ÃD,ℓxℓ + ǫ̃, (9)

where ÃD,ℓ is a T × d submatrix of Ã with vertical con-
catenation of the rows corresponding to Dℓ and columns
for block ℓ. Besides, ǫ̃ comprises the interference from
other clusters and thermal noise at the corresponding
entries of yD,ℓ.

With the randomness in ÃD,ℓ introduced by the chan-
nels between devices, which are assumed to be i.i.d Gaus-
sian, we can use some conventional greedy algorithms
such as OMP [15] or IHT [16] to perform the in-block
support recovery. Moreover, since we have the feedback
information from the BS on the number of active devices
|SI,ℓ| in the cluster, the number of iterations needed
for implementing the greedy algorithms can be greatly
reduced and limited to |SI,ℓ|.
In [8] and [10], it has been proved that if the mea-

surement matrix is an i.i.d. Gaussian matrix or random
±1 entry matrix, then a K-sparse signal can be reliably
reconstructed with the CS methods if the number of
measurements M ≥ cK logN , where c is a constant. For
our specific problem, since the signal xℓ of interest is of
dimension d and with sparsity level KI , the support can be
recovered with high probability if the number of effective
measurements satisfies

T = cKI log d = O(KI log d). (10)

III-C. Comparisons with Existing Solutions

Many contributions have been proposed for the device
detection in large-scale MTC networks by employing the
CS theory. In [18], Meng et.al simply adopted the detec-
tion algorithms from the probabilistic Bayesian framework
for the sparse event detection in wireless sensor networks
(WSN). In [19], the authors applied some greedy CS
detection algorithms for jointly decoding the multi-user ac-
tivity and data in Code Division Multiple Access (CDMA)
systems, where the exploit of the CS theory can greatly
reduce the length of the spreading sequences, thus leading
to a lower symbol rate. However, both of the schemes
are targeted for centralized detection at the receiver side,
whereas our focus is on distributed detection and resource
allocation schemes for the M2M devices.
Besides, the authors in [20] proposed a sparse signal re-

covery scheme via decentralized in-network processing for
event detection in WSN based on a consensus optimization
formulation. However, since the authors apply the random
sleeping strategy in order to enforce the compressive data
collection, the detection field for each active time slot is
rather uncertain and may end in wrong detections with a
high probability. In our proposed scheme, both the block
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and the in-block sparsity in the M2M activation pattern
are exploited, and the performance is highly reliable as
will be shown later in Section IV.
As discussed in Section III, our target problem can be

mapped to a support recovery procedure for a block-sparse
signal with block sparsity KB and in-block sparsity KI .
For a given realization of the measurement matrix, there
are certain requirements on the number of measurements
needed for the reliable signal reconstruction. In general,
R = O(KB) and T = O(logL) are sufficient for the
block support recovery at the BS, and T = O(KI log d)
measurements are required for the in-block support re-
covery at the devices. Thus, the overall number of dis-
tributed measurements M = RT required by the proposed
scheme is O(max{KB logL,KBKI log d}). However, if
the signal is treated as a conventional K-sparse vector
as in [10] without exploiting knowledge of the block-
sparse structure, where K = KBKI , a sufficient condition
for perfect recovery using OMP is M = O(K logN) =
O(KBKI logN). Since d ≪ N , we can see that from the
scaling point of view, less measurements are need by the
proposed scheme. Moreover, compared with conventional
OMP which requires at least K iterations for the signal
recovery, having distributed processing reduces the number
of iteration to KI for the guaranteed performance, which
leads to significantly reduced computational complexity.

IV. NUMERICAL RESULTS

We conduct extensive simulations to verify the per-
formance of the proposed distributed device detection
and resource allocation scheme. In our experiments, we
take the number of M2M devices in the network to be
N = 10000 and they are partitioned into L = 100 clusters
with equal size d = 100. The sparsity level is set to
be K = 20, with block sparsity KB = 4 and in-block
sparsity KI = 5, respectively, i.e., K = KBKI . Thus, the
target problem is to reconstruct the K-sparse binary vector
of length N from M distributed measurements obtained
via the measurement matrix which is drawn from the
distribution A(R, T, L, d, α) as defined in Section III-A.
Figure 1 depicts the detection probability as a function

of the number of measurements, for both OMP with
Gaussian measurements and the proposed algorithm. For
each parameter sets we average over 1000 pairs of real-
izations of the measurement matrix and the block-sparse
signal. We can see that the proposed scheme performs
a little bit worse than the standard OMP algorithm with
Gaussian measurements in the noise-free case. Though we
have analyzed in Section III-C that the proposed scheme
requires less measurements from the scaling point of view,
the constant c in (10) is comparatively larger for dis-
tributed processing. We also evaluate the performance of
the proposed scheme under inaccurate channel estimation
and white Gaussian noise. Since the imperfect channel
knowledge is taken as noise in the signal processing, we
limit the signal-to-noise ratio (SNR) to 5 dB in the simu-
lations. The corresponding results, also depicted in Figure
1, show that our approach outperforms the standard OMP
algorithm with Gaussian measurements, indicating more
robustness in performance against noise and inaccurate
channel estimations.
Figure 2 plots the CDF of the average number of iter-

ations for the signal recovery. It can be obviously shown
that the proposed scheme significantly outperforms the
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standard OMP algorithm by requiring much less iterations
due to distributed processing among the clusters, thus
leading to greatly reduced computational complexity.

V. CONCLUSION

In this paper, we introduced a novel scheme for device
detection and distributed resource allocation in large-
scale M2M communication networks based on block CS
related techniques. We partition the M2M devices in the
network into clusters based on some pre-defined criteria.
By exploiting the twofold sparsity in the activation pattern
of the M2M devices, i.e., the block sparsity and in-block
sparsity, the target problem is mapped into a support
recovery procedure for a block-sparse signal in the CS
theory. The proposed scheme mainly consists of three
phases: Firstly, in the acquisition phase, network activity is
collected in a distributed fashion. Secondly, the BS detects
the active clusters and the number of active devices in each
cluster, and then assigns a certain amount of resources
accordingly. Finally, each active devices detects the order
of its index among all the active devices in the cluster
and accesses the corresponding resource for transmission.
It has been verified that the proposed scheme is able
to efficiently reduce the scaling of the required number
of measurements for reliable signal recovery and with
much less computational complexity when comparing with
conventional CS reconstruction algorithms like OMP with
Gaussian measurements. Moreover, extensive simulations
also confirm the robustness of the proposed scheme against
Gaussian noise and inaccurate channel estimations.

3794



VI. REFERENCES

[1] D. Boswarthick, O. Elloumi, and O. Hersent, “M2M
Communications: A System Approach,” John Wiley
& Sons, Ltd, 2012.

[2] 3GPP, “Study on RAN Improvements for Machine-
Type Communications,” TR 37.868 V11.0.0, Sep.
2011.

[3] D. A. Schmidt, C. Shi, R. A. Berry, M. L. Honig,
and W. Utschick, “Distributed resource allocation
schemes,” IEEE Signal Processing Magazine, vol. 26,
pp.53-63, 2009.

[4] T. Taleb and A. Kunz, “Machine type communications
in 3gpp networks: potential, challenges and solutions,”
IEEE Communications Magazine, 2012.

[5] Y. C. Eldar, P. Kuppinger, and H. B‘̀olcskei, “Com-
pressed sensing of block-sparse signals: uncertainty
relations and efficent recovery,” IEEE Transactions on
Signal Processing, vol. 58, pp. 3042-3054, 2010.

[6] Y. C. Eldar and M. Mishali, “Robust recovery of
signals from a structured union of subspaces,” IEEE
Transactions on Information Theory, vol. 55, pp.
5302-5316, 2009.

[7] J. Fang and H. Li, “Recovery of block-sparse rep-
resentations from noisy observations via orthogonal
matching pursuit,” arXiv:1109.5430v1 [cs.IT], 2011.

[8] E. Candés, J. Romberg, and T. Tao, “Robust un-
certainty principles: exact signal reconstruction from
highly incomplete frequency information,” IEEE
Trans. Inform. Theory, vol. 52, pp. 489-509, 2006.

[9] D. Donoho, M. Elad, and V. Templyakov, “Stable
recovery of sparse overcomplete representations in the
presence of noise,” IEEE Transactions on Information
Theory, vol. 52, pp. 6-18, 2006.

[10] D. Donoho, “Compressed sensing,” IEEE Trans. In-
form. Theory, vol. 52, pp. 1289-1306, 2006.

[11] G. Wunder, H. Boche, T. Strohmer, and P. Jung,
“Sparse signal processing concepts for efficient 5g
system design,” IEEE Access, vol. 3, pp. 195-208,
2015.

[12] J. Schreck, P. Jung, and S. Stanczak, ”On channel
state feedback for two-hop networks based on low
rank matrix recovery,” IEEE Int. Conf. on Commun.
(ICC), 2013.

[13] M. Charikar, K. Chen, and M. Farach-Colton, “Find-
ing frequent items in data streams,” in Proceedings
of the 29th International Colloquium on Automata,
Languages and Programming, 2002.

[14] J. Haupt and R. Baraniuk, “Robust support recovery
using sparse compressive sensing matrices,” in Proc.
45th Annual Conf. on Information Sciences and Sys-
tems, 2011.

[15] J. A. Tropp and A. C. Gilbert, “Signal recovery from
random measurements via orthogonal matching pur-
suit,” IEEE Trans. Inform. Theory, vol. 53, pp.4655-
4666, 2007.

[16] T. Blumensath and M. Davies, “Iterative hard thresh-
olding for compressed sensing,” Applied and Compu-
tational Harmonic Analysis, vol. 27. no. 3, pp. 265-
274, 2009.

[17] E. J. Candés and J. Romberg, “Sparsity and incoher-
ence in compressive sampling,” Inverse Problems, vol.
23, pp. 969, 2007.

[18] J. Meng, H. Li, and Z. Han, “Sparse event detection
in wireless sensor networks using compressive sens-

ing,” 43rd Annual Conference on CISS, 2009.
[19] H. F. Schepker and A. Dekorsy, “Sparse multi-

user detection for CDMA transmission using greedy
algorithms,” 8th International Symposium on Wireless
Communication Systems (ISWCS), 2011.

[20] Q. Ling and Z. Tian, “Decentralized sparse signal
recovery for compressive sleeping wireless sensor
networks,” IEEE Transactions on Signal Processing,
vol. 58, pp. 2816-3827, 2010.

3795


