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ABSTRACT
The estimation of a narrowband time-varying channel under finite
block length and transmission bandwidth is investigated. A novel
method is proposed for estimation in the delay-Doppler domain by
exploiting structural constraints on low-rank matrix recovery. The
proposed algorithm uses Gauss-Seidel iterations on the low-rank pa-
rameterization under noisy training signal measurements. Theoretical
global identifiability results for the channel leakage (due to finite
block length and transmission bandwidth) are stated and the neces-
sity of considering Doppler shift induced structure is demonstrated.
Justification is provided for the choice of simulation parameters and
initialization strategies to achieve good convergence rates and some
ill-posed scenarios are also described. It is further shown that simple
sparsity-based algorithms like basis pursuit/nuclear norm minimiza-
tion do not perform well on the said constraint set for measurement
operators arising out of training sequences.

Index Terms— Time-varying channel, delay-Doppler, low-rank
matrix recovery, alternating minimization, sparse approximation, non-
convex optimization

1. INTRODUCTION
Wireless communications have enabled new systems such as intelli-
gent traffic safety (vehicle-to-vehicle communication) [1–4], robotic
networks [5], underwater surveillance systems [6] etc.. To establish
high data rate reliable wireless communication between a transmitter
and a receiver, accurate channel state information is needed at the re-
ceiver. Training-based methods, which probe the channel in time and
frequency with known signals and reconstruct the channel response
from the output signals, are most commonly used to accomplish this
task (see [7] and references therein). There are many well-known
approaches for the training-based channel estimation approach. For
example, least-squares (LS) [7, 8], Wiener filters [8, 9], compressed
sensing (CS) methods based on (element-wise) sparsity structure of
dominant paths in the channel [4,7,10], and hybrid sparse and diffuse
(HSD) estimators [11, 12]. The conventional LS and Wiener-filtering
estimators do not take advantage of the inherent structure of the chan-
nel. The other drawback of Wiener-filtering is that the knowledge of
the scattering function is required [8]; however, the scattering func-
tion is not typically known at the receiver. Often, a flat spectrum in
the delay-Doppler domain is assumed, which introduces performance
degradation due to the mismatch with respect to the true scattering
function [8]. Compressed sensing (CS) methods [4, 7, 10] take advan-
tage of the inherit sparsity structure of dominant components in the
channel; however due to finite block length and finite transmission
bandwidth the sparsity of the channel decreases in practical communi-
cation systems. This effect is known as channel leakage [4,10]. It has
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been shown that leakage [4, 10] and basis mismatch [13] significantly
degrade the performance of CS methods.

Contributions: We show that channel matrix in the time-delay (or
Doppler-delay) domain representation is a low rank matrix with rank
equal to the number of dominant paths. Using the low rank structure,
we develop an alternating minimization based approach to reconstruct
the channel matrix at the receiver using measurements from the train-
ing sequence. Our approach optimizes a weighted mean squared error
cost function and works directly in the low-rank parametrized space.
We show that the global optimum can be recovered in the absence of
noise, even though the underlying problem is non-convex under the
given parametrization. We explain our selection of weights to speed
up convergence as compared to an unweighted MMSE estimate and
highlight why a minimum nuclear norm initialization of the algorithm
fails. Performance of the algorithm is demonstrated by numerical
experiments in parameter regimes where the inverse problem is well-
conditioned, and it is also shown that basis pursuit fails with gross
errors.

The remainder of the paper is organized as follows. Section 2
derives the communication system model, shows that the model has
a low rank property, and introduces the weighted MMSE estimation
problem. Section 3 describes our alternating minimization algorithm
and states its theoretical properties. Section 4 is devoted to numerical
results. Section 5 concludes the paper.

Notations: We denote a scalar by x, a column vector by x, and
its i-th element with x[i]. Similarly, we denote a matrix by X and
its (i, j)-th element by X[i, j]. The transpose of X is given by XT

and its conjugate transpose by XH . A diagonal matrix with elements
x is written as diag{x} and the identity matrix as I. The set of real
numbers by R, and the set of complex numbers by C. The element-
wise (Schur) product is denoted by�.The MATLABr indexing rules
are used to denote parts of a vector/matrix.

2. SYSTEM MODEL AND LOW RANK STRUCTURE

We assume that the pilot sequence s[n] is transmitted over a narrow-
band linear time-varying channel

h(t, τ) =

R∑
i=1

aiδ(τ − τi)ej2πνit. (1)

Then, based on the derivation in [4] Section III, the discrete-time
representation of the system can be written as

y[n] =

+∞∑
m=−∞

h [n,m] s[n−m] + z[n], (2)

where

h[n,m] =

+∞¨

−∞

h (t+ nTs, τ) p(t− τ +mTs)q(−t) dtdτ. (3)
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Here p(t) and q(t) are respectively the transmitted pulse shape and
anti-aliasing filter, and Ts is the sampling period. Note that h[n,m]
is causal with maximum delay M − 1, i.e. h[n,m] = 0 for m ≥M
and m < 0. For simplicity, we begin by focusing on a single path
channel and extend to a multi-path channel scenario in Section 3.
Defining Π(t) = p(t) ∗ q(t), the contribution to the received signal
from a single dominant path hi(t, τ) = aiδ(t− τi)ej2πνit is of the
form

yi[n] =

M−1∑
m=0

K∑
k=−K

Hi [k,m] ej
2πnk
2K+1 s[n−m] + z[n], (4)

for n = 0, 1, ..., Nr − 1, where 2K + 1 ≥ Nr denotes the total
number sample measurements,

Hi[k,m] =

Nr−1∑
n=0

hi[n,m]

2K + 1
e−j

2πnk
2K+1 , for |k| ≤ K, (5)

is the discrete delay-Doppler, spreading function of the channel, and

hi[n,m] = aie
j2πνi((n−m)Ts+τi)Π(mTs − τi)

= hf (n)g(m),
(6)

with g(m) = aie
j2πνi(τi−mTs)Π(mTs − τi) and hf (n) =

ej2πnνiTs . We note that the leakage in the delay-Doppler plane
is due to the non-zero support of g ∈ CM and the (2K + 1)-point
Discrete Fourier Transform (DFT) of hf ∈ CNr . The leakage with
respect to Doppler decreases with the observation length Nr , and the
leakage with respect to delay decreases with the bandwidth of the
transmitted signal.

Let the pilot sequence s[n] be of length Nr +M − 1 over n =
−(M − 1), . . . , Nr − 1 and let us collect the Nr received samples
in a column vector

y = (y[0], . . . , y[Nr − 1])T. (7)
Using (6) and assuming one dominant path, the observation model
in (2) can be rewritten as the vector equation y = A

(
hfg

T
)

+ z,
where A:CNr×M → CNr is a linear operator. In particular, A is
completely described by the set of matrices An ∈ CNr×M , n =
0, 1, . . . , Nr − 1 that are uniquely defined so as to satisfy y[n] =
Tr
(
Anhfg

T
)

+ z[n] and are given by

An(k, :) =

{
0T, k 6= n,

s(n : −1 : n−M + 1)T, k = n.
(8)

The weighted minimum-mean-squared-error (MMSE) estimate of
(g,hf ) with weight matrix W , can be expressed as the solution to
the optimization problem

minimize
g,hf

∥∥∥W(
y −A

(
hfg

T
))∥∥∥2

2

subject to hf ∈ Dh, g ∈ Dg,

(P1)

where Dh and Dg respectively denote the structural restrictions on
hf and g. Clearly, Dh is completely parameterized by f since
hf ∈ CNr is an intrinsically one dimensional non-vanishing and
non-linear function of f = νiTs. It is also apparent that Dg has a
complicated analytical dependence on f , and to simplify analysis
we relax the structural restriction g ∈ Dg to g ∈ CM . The price
we pay is that we shall need more observations (y would need to be
longer) to guarantee that the weighted MMSE estimate of (g,hf )
will recover the ground truth, in the absence of noise. The relaxed
version of Problem (P1) is

minimize
g,f

∥∥∥W(
y −A

(
hfg

T
))∥∥∥2

2

subject to f ∈ (−0.5, 0.5], g ∈ CM
(P2)

Algorithm 1 AMALR
Input: w ≥ 0, y, s.
Output: Glo and f lo ∈ (−0.5, 0.5]R

Steps:
1. Initialize f (0) = 0 ∈ (−0.5, 0.5]R

2. At iteration k ≥ 1 do
(a) G(k) ← arg loc min

G∈CM×R
Jw
(
G,f (k−1)

)
(b) f (k) ← arg loc min

f∈(−0.5,0.5]R
Jw
(
G(k),f

)
3. Repeat until the value of the objective function has converged,

i.e. until Jw
(
G(k),f (k)

)
− Jw

(
G(k+1),f (k+1)

)
< ε.

where we have used periodicity of hf w.r.t. f with a period of one.
In the sequel, we shall only be interested in non-negative diagonal
weight matrices W = diag(w) ∈ RNr×Nr for some non-negative
weight vector w ∈ RNr . For subsequent reference, we define

Jw(g, f) ,
∥∥∥W(

y −A
(
hfg

T
))∥∥∥2

2

=

Nr−1∑
n=0

w2[n]
∣∣∣y[n]− Tr

(
Anhfg

T
)∣∣∣2 (9)

as our objective function.
If the number of dominant paths is R > 1 then our objective

function simply becomes

Jw(G,f) =

Nr−1∑
n=0

w2[n]
∣∣∣y[n]−

R∑
i=1

Tr
(
Anhf [i]G[:, i]T

)∣∣∣2
=

Nr−1∑
n=0

w2[n]
∣∣∣y[n]− Tr

(
AnHfG

T
)∣∣∣2 (10)

where Hf ∈ CM×R is such that Hf [:, i] = hf [i], the contribution
to h[:, :] from the ith dominant path is hi[:, :] = hf [i]G[:, i]T, and
Problem (P2) is transformed into

minimize
G,f

Jw(G,f)

subject to f ∈ (−0.5, 0.5]R, G ∈ CM×R.
(P3)

Hf ∈ CM×R such that Hf [:, i] = hf [i].

3. CHANNEL RECOVERY ALGORITHM
Let (Gopt,f opt) be a global optimum of Problem (P3). It is easy to see
that Problem (P3) is a non-convex optimization problem w.r.t. the pa-
rameterization in (G,f). Observing that HfG

T is a rank R matrix,
Problem (P3) can also be regarded as a low-rank matrix recovery prob-
lem [14], but with added structural constraints on the matrix factors
G and Hf (typically R is much smaller than M or Nr , thus making
HfG

T a low-rank matrix). We shall adopt an alternating minimiza-
tion based approach, as described in Algorithm 1, to solve for a local
optimum to Problem (P3). Our approach utilizes the low-rank struc-
ture of HfG

T directly without a further relaxation to a nuclear norm
minimization problem [15] (see Section 4.2 for an explanation of why
nuclear norm minimization would fail). The ‘arg loc min’ operator
in step 2 of the algorithm returns a local minimizer (as opposed to the
‘arg min’ operator that returns a global minimizer) and hence can be
implemented using simple gradient descent.

Remark 1. It is easy to see that Algorithm 1 terminates, since
the objective function value J

(
G(k),f (k)

)
is lower bounded by

zero and decreases with each iteration (thereby, improvement in
J
(
G(k),f (k)

)
will fall below the stopping resolution ε > 0 after
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a finite number of steps leading to termination of the algorithm).
Indeed, we have for every k ≥ 1,

J
(
G(k),f (k)

)
≥ J

(
G(k+1),f (k)

)
≥ J

(
G(k+1),f (k+1)

)
(11)

where the first inequality is due to step (2a) and the second inequality
is due to step (2b) of the algorithm.

We state a result (Theorem 1) pertaining to the output of Algo-
rithm 1 when the elements of the pilot sequence s are drawn i.i.d. from
a uniform distribution over the 4-QAM constellation

{
± 1√

2
± j√

2

}
.

We have chosen the 4-QAM constellation for the ensuing simplicity
of analytical computation; the results easily extend to other distri-
butions that are symmetric about the origin and have finite fourth
moments. Theorem 1 states that under no noise and sufficiently
small stopping resolution, the output

(
Glo,f lo) of Algorithm 1 is

the global optimum (Gopt,f opt) of Problem (P3) whenever a unique
global optimum exists. The proof of Theorem 1 is deferred to a future
publication owing to shortage of space.

Theorem 1. Let elements of s ∈ CNr+M−1 be drawn i.i.d. uni-
formly from the 4-QAM constellation

{
± 1√

2
± j√

2

}
and define

∆ , GHT
f −GoptHT

fopt ∈ CM×Nr . Given a generic weight vector
w ∈ RNr in the absence of noise, ∆ 6= 0 implies ∂

∂G
Jw(G,f) 6= 0,

if the global optimum (Gopt,f opt) is uniquely identifiable.

Remark 2. The unique identifiability of (Gopt,f opt) as the solution
to Problem (P3) is necessary for any recovery guarantee, as the
output of Algorithm 1. To see this, note that if there is a second global
optimum (G∗,f∗) to Problem (P3) then there is no way to determine
which of the two solutions is the correct one. In this case, we have
∆∗ = G∗H

T
f∗ −GoptHT

fopt 6= 0, but global optimality of (G∗,f∗)

implies ∂
∂G
Jw(G∗,f∗) = 0 thus contradicting the conclusion of

Theorem 1 if the unique identifiability clause was removed from the
statement of the theorem.

4. DISCUSSION AND SIMULATIONS
In this section we examine the trade-offs in selecting the parameters
involved in the simulation based testing of Algorithm 1 and present
relevant numerical results. We also comment on the convergence rate,
failure of nuclear norm minimization and parameter regimes where
Problem (P3) is highly ill-conditioned.

4.1. Selecting Weights
Although Theorem 1 is not very sensitive to the particular choice
of the weight vector w, proper selection of w ∈ RNr has a huge
impact on the practical performance of Algorithm 1, e.g. Problem (P3)
represents ordinary MMSE estimation for w = 1 but the observed
convergence rate is extremely slow. This behavior stems from the
non-linear role of f in the cost function Jw(G,f) that introduces
a bias in the partial derivative w.r.t. G. To improve the convergence
rate, we set the weight vector as

w[n] =

{
1, n = 0,
1√
n
, 1 ≤ n ≤ Nr.

(12)

4.2. Failure of Nuclear Norm Minimization
Since Problem (P3) is a low-rank matrix recovery problem [14], a
plausible initialization strategy could be as follows. We solve the nu-
clear norm regularized (to promote a low-rank solution) least squares

problem

minimize
X

‖W (y −A(X))‖22 + λ‖X‖∗

subject to X ∈ CNr×M
(P4)

to obtain a global optimum X∗ for some parameter λ > 0. Thereafter,
we find the best rank R approximation to X∗ using the singular value
decomposition to obtain matrices U ∈ CNr×R, Σ ∈ RR×R and
V ∈ CM×R respectively representing the left singular vectors, the
singular values and the right singular vectors. Finally, we initialize
Algorithm 1 by setting G = V ∗Σ and/or Hf = U .

The above initialization strategy does not work for Problem (P3)
because of the specific structure of the observation operator A. Ac-
cording to (8), the nth observation y[n] has contributions only from
the nth row of the unknown matrix HfG

T, i.e. rows of HfG
T are

not mixed byA to form y. Since the nuclear norm minimization strat-
egy ignores all structural information in Hf , the absence of mixing
of rows of HfG

T in the output makes this a bad initialization.

4.3. Practical Convergence Rate and Stopping Criterion
Although Theorem 1 says that Problem (P3) does not have any local
optima if it has a unique global optimum (Gopt,f opt), Algorithm 1
might not output (Gopt,f opt) as the answer if the improvement in
the value of the objective function Jw(G,f) across iterations falls
below the stopping resolution ε > 0 resulting in premature termi-
nation. In our experiments, we have observed that in such cases
the algorithm’s output

(
Glo,f lo) is nowhere near the right answer

(Gopt,f opt), resulting in gross errors. Furthermore, it can be theoreti-
cally shown that the convergence rate is quite slow when the current
iterate

(
G(k),f (k)

)
is far away from the right answer, thus making

initialization strategies very important.
Problem (P3) may become ill-conditioned if columns of Hf have

high correlation, e.g. if R = 2 and f [1] is close enough to f [2], then
we get

HfG
T = Hf [:, 1]G[:, 1]T + Hf [:, 2]G[:, 2]T

≈Hf [:, 1]G[:, 1]T + Hf [:, 1]G[:, 2]T

= Hf [:, 1](G[:, 1] + G[:, 2])T

(13)

implying that the rank one matrix Hf [:, 1](G[:, 1] + G[:, 2])T is
nearly indistinguishable from the right answer HfG

T of rank two.
This is a fundamental limitation of the system model/problem setup
and not related to any particular algorithm, i.e. all algorithms would
suffer in performance for Hf with highly correlated columns. This
limitation can be overcome by either redesigning the system archi-
tecture or changing the parameters of the sampling process. The
condition number of the matrix HH

f Hf provides a convenient way
to quantify the overall ill-conditioning in Hf for a given set of
frequencies f . To provide meaningful simulation results, we only
consider instances of f for which the condition number of HH

f Hf

is less than 10. For this bound on the condition number, numerical
computations reveal that

1. for R = 2, a frequency separation of at least 0.35/Nr is
necessary, and

2. for R = 4, a frequency separation of at least 0.7/Nr is neces-
sary.

Initialization plays an important role in determining the con-
vergence rate and so we mention the following observations. With
R = 1, a stopping resolution of ε = 10−5 and w as in (12), the
algorithm terminates prematurely whenever f opt is farther than 1/Nr
from the initialized frequency f (0), for a wide range of delay spread
choices M and no observation noise. With the same w and ε but
for R = 4, the all zero initialization f (0) = 0 gives good results

3788



5 10 15 20

0.4

0.6

0.8

1

SNR (dB)

 

 

f̂
/f f = 0.0097

f = 0.0130

f = 0.0179

(a) Relative accuracy f̂/f of estimated
frequency f̂ versus SNR at a constant
frequency factor of η = 0.7 with
different oversampling factors ρ ∈
{1.1, 1.5, 2}.
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Fig. 1: Estimation accuracy results averaged over 10 realizations of
the observation noise vector. Closer the value of f̂/f to 1, higher is
the relative accuracy of the estimate.

0.7 0.8 0.9 1 1.1 1.2 1.3-4

-2

0

2

4

6

 

 

f = (0.0037, 0.0074, 0.0111, 0.0148)
f = (0.0046, 0.0093, 0.0139, 0.0185)
f = (0.0056, 0.0111, 0.0167, 0.0222)

frequency factor, 𝜂 

Fig. 2: Scatter plot of relative accuracy
{
f̂ [l]/f [l]

∣∣∣ 1 ≤ l ≤ 4
}

of

all components in the estimated frequency vector f̂ versus frequency
factor η ∈ {0.8, 1, 1.2} at a constant oversampling factor of ρ =
1.5 and 20dB SNR.Results for different η are coded by markers
of different color/shape. For a given η, stronger the clustering of
the markers around 1 along the y-axis, higher is the overall relative
accuracy of f̂ .

when f opt has frequency separation between successive indices in
the interval [0.9/Nr, 1.1/Nr], i.e. very close to 1/Nr , in the absence
of noise and for a wide range of delay spreads. For R ≥ 5 domi-
nant components, a good initialization strategy is an interesting open
question.

4.4. Numerical Results: One Dominant Component
We have R = 1 and we set the delay spread to M = 35. The number
of free variables in the model clearly equals (M + 1) ·R = M + 1.
We set the number of observations as Nr = bρ · (M + 1) ·Rc =
bρ · (M + 1)c where ρ represents the over sampling factor. We vary
ρ in the range [1, 2]. We vary the Doppler shift f as a fraction of 1/Nr ,
i.e. we test the algorithm against a Doppler shift of f = η/Nr where
the frequency factor η is in the range [−1, 1]. We assume that the
observations are corrupted by additive circularly symmetric complex
white Gaussian noise with signal-to-noise-ratio (SNR) between 5dB
and 20dB.

Figure 1a shows the accuracy of frequency estimation f̂/f versus
SNR for different oversampling factors ρ while keeping the frequency
factor η as constant (note that changing ρ changes Nr and hence
changes the numerical value of the Doppler shift f even though η is
constant). Not surprisingly, larger oversampling leads to better esti-
mation performance at low SNR. In terms of actual numerical values,
we see accurate estimation above 10dB SNR even for a high Doppler
frequency of f = η

bρ·(M+1)c = 0.0179 at (η, ρ) = (0.7, 1.1).

Figure 1b shows the accuracy of frequency estimation f̂/f versus

Fig. 3: Plot of normalized MSE performance of BP and AMALR
versus frequency factor η ∈ {0.8, 1, 1.2} at a constant oversam-
pling factor of ρ = 1.5 and 20dB SNR. BP fails completely, due to
non-utilization of structural properties. AMALR gives less than 2%
normalized MSE.

SNR for different frequency factors η while keeping the oversam-
pling factor ρ as constant. For η < 1, the relative accuracy f̂/f
is fairly good even at SNRs as low as 5dB. However, for η = 1,
estimation fails completely at all SNRs suggesting that our algorithm
may have terminated prematurely due to a slow convergence rate (see
Section 4.3).

4.5. Numerical Results: Multiple Dominant Components

We have R = 4 and we set the delay spread to M = 35. Borrowing
the terminology from Section 4.4, we set the oversampling factor
to ρ = 1.5 and SNR as 20dB. We set the Doppler frequency vec-
tor as f =

(
η
Nr
, 2η
Nr
, 3η
Nr
, 4η
Nr

)
and vary η in [0.8, 1.2] where the

lower bound on η is influenced by well-conditioning requirements
and the upper bound is dictated by convergence rate requirements
(see Section 4.3). Figure 2 shows a scatter plot of the estimation
accuracy f̂ [l]/f [l] of each frequency component l ∈ {1, 2, 3, 4}
versus the frequency factor η while keeping the oversampling fac-
tor ρ and SNR as constants. The relative accuracy of estimation{
f̂ [l]/f [l]

∣∣∣ 1 ≤ l ≤ 4
}

is very good for η = 1, is fairly good at
η = 1.2, but breaks down completely for η = 0.8 which might be
attributed to a combination of moderately high condition number
and premature termination. Figure 3 shows the performance of basis
pursuit (BP) relative to that of Algorithm 1 (AMALR) on the same
set of frequencies, compared w.r.t. normalized MSE for the effective
channel matrix H = HfG

T. It is clear that BP fails completely
(even though (4) suggests that H is sparse in Fourier domain), and
we attribute it to non-utilization of the specific low-rank factored
structure of the channel matrix and the non-mixing nature of the
observation operator as described in Section 4.2.

5. CONCLUSIONS
In this paper, we have investigated the estimation of a narrowband
time-varying channel under finite block length and transmission band-
width. A novel low-rank matrix recovery based formulation with
structural constraints was proposed to estimate the channel in the
delay-Doppler domain, utilizing separability in the Doppler and delay
directions. An alternating minimization algorithm was proposed with
a weighted MMSE cost function for the estimation step using noisy
training signal measurements. Identifiably results for the channel
leakage in both delay and Doppler directions for the channel were
developed. Justification for the selection of weights and simulation
parameters was given and performance was verified by simulations.
Investigation of other initialization strategies is left for future re-
search.
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