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ABSTRACT

We consider multiple antenna spectrun sensing for improper

complex primary user (PU) signals. Past work on this prob-

lem is limited to PU Gaussian signals over flat fading chan-

nels. We allow non-Gaussian signals over frequency-selective

channels. A binary hypothesis testing approach is formulated

and a generalized likelihood ratio test (GLRT) is derived us-

ing the power spectral density estimator of an augmented se-

quence. An analytical solution for calculating the test thresh-

old is provided. The results are illustrated via simulations.

Index Terms— Spectrum sensing; improper signals; gen-

eralized likelihood ratio test (GLRT); multiple antennas

1. INTRODUCTION

The cognitive receiver’s spectrum sensing problem is to de-

cide if the received signal, in addition to noise, contains sig-

nals from a single or multiple primary users (PUs). This is

formulated as a binary hypothesis testing problem and is a

well-investigated topic [1]. A wide variety of approaches ex-

ist based on differing signal and noise models [1]. A widely

used model is that of temporally white but spatially correlated

proper complex Gaussian PU signal in temporally and spa-

tially uncorrelated proper complex Gaussian noise [2]. Tem-

porally colored, proper complex signals in spatially uncorre-

lated but temporally correlated Gaussian noise have been con-

sidered in [3, 4] assuming multiple independent measurement

records (snapshots) and Gaussian PU signals, whereas only

one data realization is needed in [5, 6] where the PU signals

can be non-Gaussian but are assumed to be proper. All these

approaches ([2, 3, 4, 5, 6]) exploit the generalized likelihood

ratio test (GLRT) paradigm.

In statistical signal processing in general, if the underlying

signals are improper, much can be gained in performance if

they are treated as improper [7]. In communications, BPSK

or offset-QPSK modulation based signals are improper. In

[8] a variant of the Hadamard ratio test has been devised for

improper signals and it is shown that detection performance

improves compared to the case where improper signals are

treated as proper.

Relation to Prior Work: The model of [8] is limited to

temporally white but spatially correlated improper complex

Gaussian PU signal in temporally and spatially uncorrelated

proper complex Gaussian noise. In this paper we allow tem-

poral correlation for both signal and noise, and also allow sig-

nal to be non-Gaussian.

Contributions: A binary hypothesis testing approach is

formulated and a generalized likelihood ratio test (GLRT) is

derived using the power spectral density estimator of an aug-

mented sequence. An asymptotic analytical solution for cal-

culating the test threshold is provided. The results are illus-

trated via computer simulations.

Notation: We use S � 0 and S ≻ 0 to denote that

Hermitian S is positive semi-definite and positive definite, re-

spectively. For a square matrix A, |A| and etr(A) denote
the determinant and the exponential of the trace of A, re-

spectively, i.e., etr(A) = exp(tr(A)), Bk;i:l,j:m denotes the

submatrix of the matrix Bk comprising its rows i through l
and columns j through m, Bk;ij is its ijth element, and I is

the identity matrix. The superscripts ∗, T and H denote the

complex conjugate, transpose and the Hermitian (conjugate

transpose) operations, respectively.

2. SYSTEMMODEL

Let p× 1 n(t) denote a zero-mean staionary proper Gaussian
random sequence (noise) and p × 1 s(t) denote a zero-mean
stationary improper random sequence (signal) which is inde-

pendent of {n(t)} and could be non-Gaussian. We consider

the following binary hypothesis testing problem for the mea-

surement sequence x(t):

H0 : x(t) = n(t), noise only

H1 : x(t) = s(t) + n(t), signal and noise,
(1)

where H0 is the null hypothesis that the cognitive user is re-

ceiving just noise, and H1 is the alternative that signal from

PU (or PUs) is also present. We assume that noise is uncor-

related across sensors (antennas) but it may be nonwhite with

possibly different power spectra at different sensors. The sig-

nal s(t) is not necessarily an i.i.d. sequence.
A stationary complex zero-mean process {x(t)} of di-

mension p is said to be proper [7] if its matrix complementary
correlation (covariance) function (called pseudo-correlation

in [9]) R̃xx(τ) vanishes, i.e.,

R̃xx(τ) = E{x(t+ τ)xT (t)} = 0, τ = 0,±1, · · · , (2)
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where x(t) = xr(t) + jxi(t), with xr(t) and xi(t) denot-
ing its real and imaginary components, respectively. Define

Rxx(τ) = E{x(t + τ)xH(t)}, the conventional matrix cor-
relation function. The PSD Sx(f) of {x(t)} is the Fourier

transform of Rxx(τ), Sx(f) =
∑∞

τ=−∞
Rxx(τ)e

−j2πfτ ,

whereas the complementary PSD (C-PSD) S̃x(f) of {x(t)}
is S̃x(f) =

∑∞

τ=−∞
R̃xx(τ)e

−j2πfτ . Clearly, for a proper

process, the C-PSD vanishes.

We observe x(t) for t = 0, 1, · · · , N−1 (N samples). We

employ multivariate spectral analysis to discriminate between

the two hypotheses. Since s(t) is assumed to be improper,

we will exploit both PSD and C-PSD. Define the augmented

complex process {y(t)} and the real-valued process {z(t)} as

y(t) =

[

x(t)
x∗(t)

]

, z(t) =

[

xr(t)
xi(t)

]

. (3)

We assume that {z(t)} satisfies Assumption 2.6.1 of [10] so
that some asymptotic results from [10] regarding PSD estima-

tors can be invoked; the time series need not be Gaussian but

its moments of all orders should be finite.

Consider the finite Fourier transform (FFT) dz(fn) of

z(t), t = 1, 2, · · · , N − 1, given by

dz(fn) :=
N−1
∑

t=0

z(t)e−j2πfnt (4)

where fn = n/N , n = 0, 1, · · · , N−1. Then the estimator of
the PSD of z(t) at frequency fn, based on the Daniell method,
is given by

Ŝz(fn) =
1

K

mt
∑

l=−mt

(

N−1dz(fn+l)d
H
z (fn+l)

)

(5)

where K = 2mt + 1 is the smoothing window size. By [10,

Theorem 7.3.3], Ŝz(fn) is asymptotically (“large” N ) dis-

tributed as WC

(

2p,K,K−1Sz(fn)
)

so long as the smooth-

ing window in (5) does not include the frequency at n = 0 or
n = N/2, whereWC

(

2p,K,K−1Sz(fn)
)

denotes the com-

plex Wishart distribution of dimension 2p, degrees of free-
dom K, and mean value Sz(fn). If a random matrix X ∼
WC (p,K,S(f)), then by [10, Sec. 4.2], E{X} = KS(f),
cov {Xjk,Xlm} = KSjl(f)S

∗
km(f), and for K ≥ p, the

probability density function (pdf) ofX is given by

fX(X) =
1

Γp(K)

1

|S(f)|K |X|K−p etr{−S−1(f)X} (6)

where the pdf (6) is defined for S(f) ≻ 0 and X � 0, and is
otherwise zero, and Γp(K) := πp(p−1)/2

∏p
j=1 Γ(K− j+1)

where Γ(n) denotes the (complete) Gamma function Γ(z) :=
∫∞

0
tz−1e−t dt.
We will confine our attention to the frequency points over

which the spectral estimators are approximately mutually in-

dependent, which for the Daniell method are given by

f̃k =
(k − 1)K +mt + 1

N
, 1 ≤ k ≤ M =

⌊ N
2 −mt − 1

K

⌋

.

(7)

LetM := {f̃k : 1 ≤ k ≤ M} denote the set ofM frequency

bins as in (7) of interest. From (3) we have

y(t) = T z(t), T =

[

I jI
I −jI

]

(8)

where (2p) × (2p) T is full-rank . Hence, dy(fn) =

T dz(fn) and Ŝy(fn) = T Ŝz(fn)T H where dy(fn) :=
∑N−1

t=0 y(t)e−j2πfnt and

Ŝy(fn) =
1

K

mt
∑

l=−mt

(

N−1dy(fn+l)d
H
y (fn+l)

)

. (9)

By the complex-valued counterpart of [11, Thm. 3.2.5], for

any m × p matrix A of rank m, if X ∼ WC (p,K,S(f)),

then AXAH ∼ WC

(

m,K,AS(f)AH
)

. Therefore Ŝy(fn)

is (asymptotically) distributed as WC

(

2p,K,K−1Sy(fn)
)

.

Furthermore, Ŝy(f̃k)’s for f̃k as in (7) are asymptotically mu-
tually independent complex Wishart random matrices.

UnderH0, x(t) is proper withSx(f) = diag{Sx;ii(f), i =
1, 2, · · · , p} and

Sy(f) =

[

Sx(f) 0

0 S∗
x(−f)

]

, (10)

whereas under H1, x(t) is improper with Sy(f) � 0 with

no specific structure. Testing for the presence of an improper

PU signal in spatially uncorrelated proper Gaussian noise then

reformulated as the problem:

H0 : Sy(f̃k) = diag{Sx;ii(f̃k), i = 1, 2, · · · , p,
S̃x;ℓℓ(−f̃k), ℓ = 1, 2, · · · , p} ∀f̃k ∈ M

H1 : Hc
0 = complement ofH0.

(11)

We assume that Sy(f) ≻ 0 for any f . Otherwise, one can
add artificial proper white Gaussian noise to x(t) to achieve
Sy(f) ≻ 0.

3. PSD-BASED GLRT

In this section we derive the GLRT. We will denote the spec-

tral estimator at the k-th frequency bin f̃k (see (7), acquired

from {y(t)}N−1
t=0 , via (9), asYk. We have

Yk
a∼ WC

(

2p,K,K−1Sy(f̃k)
)

(12)

and Yks are mutually independent for k ∈ [1,M ]. The joint

probability density function (pdf) of Yk for f̃k ∈ M un-

der H0 is maximized w.r.t. Sx;ii(f̃k) for Ŝx;ii(f̃k) = Yk;ii,

and w.r.t. Sx;ℓℓ(−f̃k) for Ŝx;ℓℓ(−f̃k) = Yk;(ℓ+p)(ℓ+p). Un-

der H1, the joint pdf of Yk for k ∈ [1,M ] is maximized

w.r.t. the Hermitian matrix Sy(f̃k) for Ŝy(f̃k) = Yk. Define

Y = {Yk, k ∈ M}. Then one gets the GLRT L :=

fY(Yk, k ∈ M|H1, Ŝy(f̃k))

fY(Yk, k ∈ M|H0, Ŝx;ii(f̃k), Ŝ∗
x;ii(−f̃k), i ∈ [1, p])

H1

R
H0

τ1

(13)
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where the threshold τ1 is picked to achieve a pre-specified

probability of false alarm Pfa = P{L ≥ τ1 |H0}. This re-
quires pdf of L under H0 which is discussed in Sec. 4. Sim-

plifying, one obtains

L =

M
∏

k=1

Lk, Lk :=

[
∏p

ℓ=1

(

Yk;ℓℓ Yk;(ℓ+p)(ℓ+p)

)]K

|Yk|K
(14)

Invariance of GLRT: Note that Lk is invariant to trans-

formation Yk → AkYkA
H
k for any nonsingular diagonal

Ak ∈ C
2p×2p. This observation allows us to transform any

Yk to Ỹk ∼ WC (2p,K, I) under H0 by choosing Ak;ℓℓ =√
KS

−1/2
x;ℓℓ (f̃k) for ℓ ∈ [1, p], andAk;ℓℓ =

√
KS

−1/2∗
x;ℓℓ (−f̃k)

for ℓ ∈ [1 + p, 2p]. Then L is invariant and transformed Ỹks

now correspond to proper i.i.d. (white) sequence x(t) which
can be used to compute the test threshold via Monte Carlo

simulations. This threshold is valid for any other PSD.

4. THRESHOLD SELECTION

We now turn to determination of an asymptotic expansion of

the distribution of L under H0 following [11, 12, 13]. First

we need the following result:

Lemma 1 : UnderH0, E{ 1
Lh |H0}

=
Γ2Mp(K)

[

∏2p
ℓ=1 Γ(K − ℓ+ 1)

]M

[

∏2p
k=1 Γ(K(1 + h)− k + 1)

]M

[Γ(K(1 + h))]
2Mp

•

(15)

Proof : Using the transformation specified in Sec. 3 to obtain

Ỹk ∼ WC (2p,K, I) underH0, we have

E{1/Lh
k |H0} =

∫ |Ỹk|Kh+K−2p

∏p
ℓ=1

(

YKh
k;ℓℓ Y

Kh
k;(ℓ+p)(ℓ+p)

)

× 1

Γ2p(K)
etr{−Ỹk} dỸk

=
Γ2p(K +Kh)

Γ2p(K)
E

{

p
∏

ℓ=1

(Y′
k;ℓℓ Y

′
k;(ℓ+p)(ℓ+p))

−Kh

}

,

(16)

where Ỹ′
k ∼ WC (2p,K(1 + h), I). Hence Ỹ′

k;iis are inde-

pendent for i ∈ [1, 2p] and Ỹ′
k;ii ∼ 1

2χ
2
2K(1+h) . Since (see

[11, p. 101])

E{W r} =
2rΓ((n/2) + r)

Γ((n/2))
for W ∼ χ2

n, (17)

we obtain

E
{

(Ỹ′
k;ii)

−Kh
}

=
Γ(K)

Γ(K(1 + h))
∀i ∈ [1, 2p]. (18)

Now using Γp(K) := πp(p−1)/2
∏p

j=1 Γ(K − j + 1), (14),
(16) and (18), we get the desired result. �

In order to exploit Lemma 2 (stated next), we need to es-

tablish that 0 ≤ L−1 ≤ 1. Since Yk ≻ 0 (hence Yk;ii > 0
∀i), L−1 ≥ 0 follows immediately. By Hadamard’s inequal-

ity [14, p. 477], we have |Yk| ≤
∏2p

i=1 Yk;ii which implies

L−1 ≤ 1. The following result follows from [11, Sec. 8.2.4],

[12, Sec. 8.5.1]:

Lemma 2 : Consider a random variable W (0 ≤ W ≤ 1)
with the hth moment (h = 0, 1, 2, · · · )

E{Wh} = C

(

∏b
j=1 y

yj

j
∏a

k=1 x
xk

k

)h
∏a

k=1 Γ(xk(1 + h) + ξk)
∏b

j=1 Γ(yj(1 + h) + ηj)
,

(19)

where a and b are integers,C is a constant such thatE{W 0} =

1 and
∑a

k=1 xk =
∑b

j=1 yj . Let Br(h) denote the Bernoulli
polynomial of degree r and order unity. Define

ν = −2
[
∑a

k=1 ξk − ∑b
j=1 ηj − 1

2 (a − b)
]

, ρ = 1 −
1
ν

[
∑a

k=1 x
−1
k

(

ξ2k − ξk + 1
6

)

−∑b
j=1 y

−1
j

(

η2j − ηj +
1
6

)]

,

βk = (1− ρ)xk, ǫj = (1− ρ)yj and

ωr = (−1)r+1

r(r+1)

{
∑a

k=1
Br+1(βk+ξk)

(ρxk)r
− ∑b

j=1
Br+1(ǫj+ηj)

(ρyj)r

}

.

Then with χ2
n denoting a random variable with central chi-

square distribution with n degrees of freedom (as well as the

distribution itself),

P{−2ρ ln(W ) ≤ z} = P{χ2
ν ≤ z}+ ω2

[

P{χ2
ν+4 ≤ z}

−P{χ2
ν ≤ z}

]

+ ω3

[

P{χ2
ν+6 ≤ z} − P{χ2

ν ≤ z}
]

+
{

ω4

[

P{χ2
ν+8 ≤ z} − P{χ2

ν ≤ z}
]

+
1

2
ω2
2

[

P{χ2
ν+8 ≤ z}

−2P{χ2
ν+4 ≤ z}+ P{χ2

ν ≤ z}
] }

+

a
∑

k=1

O(x−5
k ) +

b
∑

j=1

O(y−5
j ) • (20)

Comparing (19) with (15), we find the correspondence

a = 2Mp, b = 2Mp, xk = K,

ξk = 1− kmod(2p) for k = 1, 2, · · · , a,
yj = K and ηj = 0 for j = 1, 2, · · · , b. (21)

Comparing Lemmas 1 and 2, we further have

βk = (1− ρ)K ∀k, ǫj = (1− ρ)K ∀j. (22)

Furthermore, one has E{1/L0 |H0} = 1. Thus, Lemma 2 is
applicable with W = 1/L and parameters specified in (21).

Using these values in Lemma 2 and simplifying, one gets

ν = 2Mp(2p− 1), ρ = 1− 2p+ 1

3K
, (23)

a
∑

k=1

Br+1(βk + ξk)

(ρxk)r
= M

2p
∑

l=1

Br+1((1− ρ)K + 1− l)

(ρK)r
,

(24)
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b
∑

j=1

Br+1(ǫj + ηj)

(ρyj)r
= 2Mp

Br+1((1− ρ)K)

(ρK)r
. (25)

Therefore, we have

ωr =
(−1)r+1M

r(r + 1)(ρK)r

{

(

2p
∑

l=1

Br+1((1− ρ)K + 1− l)

)

− 2pBr+1((1− ρ)K)

}

. (26)

It then follows from Lemma 2 that

P{2ρ ln(L) ≤ z |H0} = P{χ2
ν ≤ z}+ ω2

[

P{χ2
ν+4 ≤ z}

−P{χ2
ν ≤ z}

]

+ ω3

[

P{χ2
ν+6 ≤ z} − P{χ2

ν ≤ z}
]

+
{

ω4

[

P{χ2
ν+8 ≤ z} − P{χ2

ν ≤ z}
]

+
1

2
ω2
2

[

P{χ2
ν+8 ≤ z}

−2P{χ2
ν+4 ≤ z}+ P{χ2

ν ≤ z}
] }

+O(K−5) (27)

where ωr’s are given by (24)-(26), and

ln(L) = K

M
∑

k=1

(

[

p
∑

ℓ=1

ln
(

Yk;ℓℓ Yk;(ℓ+p)(ℓ+p)

) ]

− ln(|Yk|)
)

.

(28)

We summarize the above in the following result.

Theorem 1. The GLRT for (11) is given by 2ρ ln(L)
H1

R
H0

τ

where ρ and ln(L) are given by (23) and (28), respectively.

The threshold τ is picked to achieve a pre-specified Pfa =
1 − P{2ρ ln(L) ≤ τ |H0} where P{2ρ ln(L) ≤ τ |H0} is
given by (27) and the various needed parameters are specified

in (23)-(26) •
Theorem 1 allows us to calculate the test threshold ana-

lytically.

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

 design P
fa

A
c
tu

a
l 
P

fa

  256 samples; 10000 runs;  K=8, M=15

p=2, improper

p=2, proper

p=3, improper

p=3, proper

p=4, improper

p=4, proper

Fig. 1: Actual Pfa vs. design Pfa, N = 256,K = 15,M = 8

5. SIMULATION EXAMPLES

First we investigate the efficacy of Theorem 1 in computing

the GLRT threshold for a given Pfa. We consider p anten-

nas (p=1,2,3 or 4) with spatially uncorrelated, colored proper
complex Gaussian noise {n(t)} generated by filtering p inde-
pendent sequences through p separate linear filters each with
impulse response {0.3, 1.0, 0.3}. To estimate the PSD of aug-

mented y(t) for N = 256, we choose mt = 7 leading to

K = 15 and M = 8. In Fig. 1 we compare the actual Pfa

and design Pfa based on 10,000 runs. It is seen that Theorem

1 is effective in accurately calculating the threshold value.
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0
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snr=−7.5dB, p=2, improper

snr=−7.5dB, p=2, proper

snr=−5dB, p=2, improper

snr=−5dB, p=2, proper

Fig. 2: ROC curve, N = 256,K = 15,M = 8

Next we show the receiver operating characteristic (ROC)

curves. The noise n(t) is as in the previous example and the

PU signal is given by s(t) =
∑4

l=0 h(l)I(t− l) where I(t) is
a scalar BPSK sequence and vector channel h(l) is Rayleigh
fading with 5 taps, equal power delay profile, mutually in-

dependent components. Thus signal is improper and noise

is proper. The probability of detection Pd versus false-alarm

rate Pfa results for three different SNR values and p = 2,
based on 10,000 runs, is shown in Fig. 2; SNR is defined as

ratio of the sum of signal powers at the p antennas to the sum
of noise powers. In all cases we have N=256, K=15 and

M=8. We also show the results of [5, 6] where we do not ex-

ploit C-PSD (labeled “proper” in Fig. 2; our proposed GLRT

is labeled “improper”). It is seen that performance improves

with increasing SNR, and our approach is superior to the case

when impropriety of PU signal is ignored.

6. CONCLUSIONS

In this paper we investigated a method based on analysis of

the multivariate PSD of augmented received noisy complex

signal for spectrum sensing for multiantenna improper com-

plex PU signals. We allow temporal correlation for both sig-

nal and noise, and also allow signal to be non-Gaussian. Our

proposed approach is based on GLRT. An analytical method

for calculation of the test threshold was provided and illus-

trated via simulations.
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