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ABSTRACT

We study the connectivity of overlaid wireless networks
where two users can communicate if the signal-to-interference
ratio is larger than a threshold subject to an outage constraint.
By using percolation theory, we first specify a 2-dimensional
connectivity region defined as the set of density pairs—the
density of secondary users and the density of primary users—
within which the secondary network is percolated. Several
interesting properties of this region are also revealed. Our
work provides a new perspective for better understanding of
the connectivity of large-scale overlaid networks.

1. INTRODUCTION

Connectivity is an essential requirement in wireless networks.
Recently, percolation theory [1] has been adopted for connec-
tivity study in wireless networks. The network is percolated
if there exists a giant connected component in it, information
can be disseminated to most of the users via this component.

One well-known result for the network percolation un-
der the signal-to-interference ratio (SIR) model indicates that
there exists a critical orthogonality factor γ ∈ [0, 1], which
stems from the imperfect orthogonality of the CDMA codes,
above which the network will never percolate [2, 3]. But they
implicity assume that the SIR threshold T > 1. With the
development of detection techniques, weak signal detection
becomes feasible, and reliable transmission could be more
meaningful than high transmission rate in certain scenarios.
For example, for a sensor network designed to collect envi-
ronmental data, the reliability and durability is more impor-
tant than the transmission rate.
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The scenario becomes even more aggravated in overlaid
networks where secondary users (SUs) coexist with licensed
primary users (PUs) and share the same spectrum, while the
PUs have the priority to access the spectrum and the SUs
need to operate conservatively to limit their interference to
the PUs [4]. Thus the percolation of SU networks could be
much more challenging and interesting.

The connectivity has been widely explored in literature. A
connectivity region for the overlaid networks under a protocol
model is established in [5], but the percolation under the SIR
model was not investigated. In [6], the author showed that for
a small threshold, there exists a density interval for which per-
colation happens in a stand-alone network. But they only pro-
vided a rough range. The percolation of a multi-channel over-
laid networks under SINR model was studied in [7], while the
outage constraints were ignored. The local connectivity of
the overlaid networks is studied in [8], but they didn’t consid-
er the percolation. To the best of our knowledge, there is no
similar work for overlaid networks under the SIR model sub-
ject to outage constraints. Motivated by the results in [2, 3],
we focus on the percolation of overlaid networks with γ = 1
and endeavor to investigate the percolation for small enough
SIR threshold case. In this paper, we obtain a quantitative
density interval for the stand-alone network, which is a new
progress from [6]. Further for the overlaid networks, we pro-
pose a 2-dimensional (2D) connectivity region, which could
be used to estimate the network percolation status intuitively.

The rest of the paper is organized as follows. The system
model is introduced in Section II. In section III the connectiv-
ity for the stand-alone network case is studied. In section IV
the connectivity for the overlaid network case is investigated.
Finally the paper is concluded in Section V.

2. SYSTEM MODEL

Consider that a PU network and a SU network coexist in the
same region R2. We assume the distribution of PUs (SUs)
follows a homogeneous Poisson Point Process Πp = {Xp(i)}
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(Πs = {Xs(i)}) of density λp (λs). For simplicity, we as-
sume all PUs (SUs) have the same transmission power Pp

(Ps), and the distance between each primary (secondary)
transmitter-receiver pair is rp (rs). For the wireless channel,
we consider both the large-scale path-loss and small-scale
Rayleigh fading. As such, the normalized channel power
gain g(d) is given as g(d) = γd−α, where γ denotes the
small-scale fading drawn from an exponential distribution. d
is the distance between the transmitter and the corresponding
receiver, and α > 2 denotes the path-loss exponent. We use
Tp (Ts) to represent the SIR threshold for the PU (SU) net-
work, further we denote the outage constraint of the PU (SU)
network as ϵp (ϵs). The thermal noise is assumed negligible
in this interference-limited scenario.

3. PERCOLATION IN STAND-ALONE NETWORK

When the SU network is absent, a typical PU Xp(i) is con-
nected to its corresponding receiver Yp(i) at distance rp if

Prob
(
Ppg(rp)

Ip
< Tp

)
≤ ϵp, (1)

where Ip =
∑

Xp(k)∈
∏

p \{Xp(i)} Ppg(∥Xp(k) − Yp(i)∥) is
the sum interference power from concurrent PU transmission-
s, and ∥ · ∥ is the Euclidean norm. From the above constraint,
we can easily obtain a maximum PU density, denote as λmax

p ,
below which the primary outage constraint ϵp can be satisfied.
Thus we have

λp ≤ λmax
p =

− ln(1− ϵp)

2πkαT
2/α
p r2p

, (2)

where kα = πα−1

sin(2π/α) . Similarly, when the PU network is
absent, we have

λs ≤ λmax
s =

− ln(1− ϵs)

2πkαT
2/α
s r2s

. (3)

According to percolation theory [1], for a stand-alone net-
work with density λ and transmission range r, there exists
a critical density λc(r) (λc(r) ≈ λc(1)r

−2, where λc(1) ≈
1.44 is the critical density for the network in which users have
unit transmission range), such that the network is percolated
when λ > λc(r). We have the following theorem.

Theorem 1. When Ts <
(− ln(1−ϵs)
2πkαλc(1)

) 2
α , there exists a closed

density interval Λ = [λc(rs), λ
max
s ], such that the stand-alone

network is percolated if λs ∈ Λ.

Proof: We know λc(rs) is the critical density for the
stand-alone SU network, above which the percolation hap-
pens; while λmax

s is the maximum density for the stand-alone
SU network, below which the outage constraint is assured.
Thus when λc(rs) < λmax

s , there exists a closed density

interval Λ = [λc(rs), λ
max
s ], such that if λs ∈ Λ, the stand-

alone SU network is percolated. In this case we have

λc(1)

r2s
<

− ln(1− ϵs)

2πkαT
2/α
s r2s

⇒ Ts <

(
− ln(1− ϵs)

2πkαλc(1)

) 2
α

. (4)

Remark: This result shows that for a small enough thresh-
old, there exists a closed density interval. For example, if we
choose α = 4 and ϵs = 0.1, according to Theorem 1, we
know that such density interval exist if the threshold Ts <
0.14. When the density is chosen within this interval, the net-
work will percolate. It is consistent with the conclusion in [6].
Since T determines the user’s transmission rate, data transfers
can be achieved via this giant connected component by using
low rate links with strong error correction techniques.

4. PERCOLATION IN OVERLAID NETWORKS

In this case, both the outage constraints of the PU network
and the SU network should be satisfied simultaneously. We
have

Prob
(
Ppg(rp)

Ip + Isp
< Tp

)
≤ ϵp, (5)

Prob
(
Psg(rs)

Is + Ips
< Ts

)
≤ ϵs, (6)

where Isp =
∑

Xs(k)∈
∏

s
Psg(∥Xs(k) − Yp(i)∥) (Ips =∑

Xp(k)∈
∏

p
Ppg(∥Xp(k) − Ys(i)∥)) is the sum interference

power from concurrent SU (PU) transmissions. In order to
satisfy both the constraints in (5) and (6) simultaneously, the
SU density should be bounded above by:

λs ≤ λm1
s = (

Pp

Ps
)

2
α (λmax

p − λp). (7)

λs ≤ λm2
s = λmax

s − λp(
Pp

Ps
)

2
α . (8)

By combining (7) and (8), we have

λs ≤ min(λm1
s , λm2

s ). (9)

4.1. Feasible density region

Feasible density region is defined as the set of density pairs
{(λs, λp)}, in which both the primary and secondary outage
constraints are satisfied. In this paper, we mainly focus on the
case when the secondary outage constraint dominants, i.e.,
λm2
s ≤ λm1

s . Shown as the inner triangle region in Fig. 1,
the feasible density region is a closed 2D area, where line a
indicates the case when the equality (7) holds, and line b in-
dicates the case when (8) is tighter than (7). The case that
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Fig. 1. The feasible density region when the secondary outage

constraint dominates (λmax
s ≤ λmax

p

(Pp

Ps

) 2
α ).

primary outage constraint dominates will be considered in fu-
ture work.

The SU’s transmission range in this case can be easily
obtained from (8) and (3) as

rs ≤

√√√√ − ln(1− ϵs)

2πkαT
2/α
s

(
λp

(Pp

Ps

) 2
α + λs

) . (10)

4.2. Percolation based on the feasible density region: edge
open probability approach

In this part, we investigate the connectivity from the percola-
tion perspective. From [9] we know that the network is per-
colated if the edge open probability is larger than a threshold
Pc = 1/2. To obtain the edge open probability, we will map
the network model to a discrete percolation model. Our ap-
proach takes the following procedure. We begin by construct-
ing a square lattice L with edge length lc, which covers the
whole network area. Let L′ be the dual lattice of L, which
is constructed by shifting of lc/2 horizontally and vertically
from L, as depicted in Fig. 2. Thus each site (vertex) si from
L is associated with a dashed square Gsi . For simplicity, we
assume lc = rs/

√
5, which ensures a random SU can com-

municate with any SUs located in the neighboring squares.
The site si is said to be open when there exist at least one

SU within Gsi . The probability that there exist at least one
SU within one dashed square is

Ps = 1− exp
(
− λsr

2
s/5

)
. (11)

A bond lc = sisj is declared to be open if both si and sj
are open, thus the edge open probability for the overlaid SIR
model can be obtained as

Pe = P 2
s . (12)

From [9], we know that if Pe ≥ Pc, the network is perco-
lated almost surely. Thus the SU network is percolated if the
following inequality holds[

1− exp
(
− λsr

2
s/5

)]2 ≥ Pc, (13)

js is
c
l

L

'L

iS
G

jS
G

sr

Fig. 2. The grid lattice construction.

that is[
1−exp

(
− λs

5

− ln(1− ϵs)

2πkαT
2
α
s

(
λp

(Pp

Ps

) 2
α + λs

))]2 ≥ Pc. (14)

After some simplification, we obtain

λp

λs
≤

(
ln(1− ϵs)

−1

10πkαT
2
α
s ln(1− P

1/2
c )−1

− 1

)(
Ps

Pp

) 2
α

, n

(
Ps

Pp

) 2
α

, K1, (15)

which is represented by line c in Fig. 3.
To determine the shape of the connectivity region, we will

evaluate the position of line c. From Fig. 3, we know that
a special point (λc(rs), λ

max
p,c ) is located on line b, where

λmax
p,c = (Ps

Pp
)

2
α (λmax

s − λc(1)r
−2
s ) can be obtained from

(8). We define λmax
p,c as the maximum allowable PU densi-

ty. When the PU density is above this value, no matter how
large the SU density is, the SU network will never percolate.

Draw a straight line across the origin and (λc(rs), λ
max
p,c ),

we obtain a new line, denote as line d. Further we denote the
slope of line d as K2, given by

K2 = (
Ps

Pp
)

2
α

(
λmax
s − λc(1)r

−2
s

λc(1)r
−2
s

)
. (16)

To evaluate the impact of line c on the connectivity region,
we need to compare the slope of line c and line d. We have

K2

K1
=

(Ps

Pp
)

2
α

(
λmax
s −λc(1)r

−2
s

λc(1)r
−2
s

)
(Ps

Pp
)

2
α

(
ln(1−ϵs)−1

10πkαT
2
α
s ln(1−P

1/2
c )−1

− 1

)
=

λmax
s r2s/λc(1)− 1

λmax
s r2s/

(
5 ln(1− p

1/2
c )−1

)
− 1

> 1, (17)

thus we know that line c is located under line d, which
means the secondary network is percolated if the density
pair (λs, λp) is chosen under line c. Since λs ≥ λc(rs),
for the secondary outage constraint dominant case (λmax

s ≤
λmax
p

(Pp

Ps

) 2
α ), the connectivity region under the overlaid SIR

model is an irregular shaped area shown as the shaded region
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Fig. 3. Connectivity region for the overlaid networks with
SIR model where the SU network outage constraint domi-
nates.

in Fig. 3. The overlaid network with density pair (λs, λp)
chosen from this connectivity region satisfies the condition
for percolation of the secondary network, as well as the out-
age constraints for both networks.

4.3. Properties of the connectivity region

Denote the irregular shaped connectivity region as C2, we
have the following theorem.

Theorem 2. Basic properties of the connectivity region C2

T2.1 C2 is a contiguous area, that is, for any two points
(λs1, λp1) and (λs2, λp2), there is a continuous path in
C2 connecting the two points.
T2.2 C2 is a convex area, that is, draw a straight line
between any two points (λs1, λp1) and (λs2, λp2) in C2,
all the points located on this line belong to C2.
T2.3 For the secondary outage constraint dominant
case, the area of C2 is an increasing function of Ps, and
it is maximized when Ps = Pp

(
λmax
p /λmax

s

)α
2 .

Proof: The proof of T2.1 is omitted due to limited space.
Readers may refer to Theorem 1.1 in [10] for a similar proof.

T2.2: As shown in Fig. 3, we know that the points in C2

satisfy the four conditions below:
λs ≥ λc(rs), (18)
λp ≥ 0, (19)
λs +mλp ≤ λmax

s , (20)
λp ≤ nλs/m, (21)

where n =

(
ln(1−ϵs)

−1

10πkαT
2
α
s ln(1−P

1/2
c )−1

− 1

)
and m =

(Pp

Ps

) 2
α

are constants. Assume we have two random points (λs1, λp1)
and (λs2, λp2) in C2, and draw a straight line between these
two points. Denote the coordinates of the points located on
this straight line as (λ′

s, λ
′
p), we have{

λ′
s = θλs1 + (1− θ)λs2,

λ′
p = θλp1 + (1− θ)λp2,

Fig. 4. Partition of C2. The area of C2 is the sum of two
independent areas, denote as A1 and A2, respectively.

where θ (0 ≤ θ ≤ 1) is a constant. Thus we only need to
show that (λ′

s, λ
′
p) satisfies (18)–(21).

From λs1 ≥ λc(rs), we have θλs1 ≥ θλc(rs). Corre-
spondingly, we have (1 − θ)λs2 ≥ (1 − θ)λc(rs). Thus we
can obtain θλs1 + (1 − θ)λs2 ≥ λc(rs), i.e., λ′

s ≥ λc(rs),
and (18) is satisfied. Conditions (19)–(21) can be checked
similarly, which is omitted in the interest of space.

T2.3: Denote the area of C2 as A. As shown in Fig. 4,
A is the sum of two independent areas, denote as A1 and A2,
respectively. We have

A1 =
n

2

(
λc(1)

r2s
+

λmax
s

1 + n

)(
λmax
s

1 + n
− λc(1)

r2s

)(
Ps

Pp

) 2
α

, (22)

A2 =
1

2

(
nλmax

s

1 + n

)2(
Ps

Pp

) 2
α

, (23)

where n is the same constant with that in (15). Thus we know
that A = A1 + A2 is an increasing function of Ps, and A is
maximized when we have the maximum Ps. In this paper we

assume λmax
s ≤ λmax

p

(Pp

Ps

) 2
α , thus the maximum area can be

achieved when we choose Ps = Pp

(
λmax
p /λmax

s

)α
2 .

Remark: T2.1 and T2.2 specify the basic structure of C2.
T2.3 further reveals the impact of SU network parameters on
C2. Thus in order to achieve the maximum area for C2, the
SU’s power should be designed carefully.

5. CONCLUSION

In this paper, we study the connectivity of overlaid wireless
networks where two users can communicate if the SIR at the
receiver is larger than a threshold subject to an outage con-
straint. We derive a connectivity region unde the SIR model,
which can be used to estimate the network percolation sta-
tus. Our analysis provides a new perspective for better under-
standing of the connectivity of large-scale overlaid networks
with outage constraints.
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